![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnrecl | Structured version Visualization version GIF version |
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.) |
Ref | Expression |
---|---|
nnrecl | ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) | |
2 | gt0ne0 11621 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
3 | 1, 2 | rereccld 11983 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
4 | arch 12411 | . . 3 ⊢ ((1 / 𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛) |
6 | recgt0 12002 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴)) | |
7 | 3, 6 | jca 513 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴))) |
8 | nnre 12161 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
9 | nngt0 12185 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 0 < 𝑛) | |
10 | 8, 9 | jca 513 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛)) |
11 | ltrec 12038 | . . . . 5 ⊢ ((((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴)))) | |
12 | 7, 10, 11 | syl2an 597 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴)))) |
13 | recn 11142 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
14 | 13 | adantr 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
15 | 14, 2 | recrecd 11929 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 / 𝐴)) = 𝐴) |
16 | 15 | breq2d 5118 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴)) |
17 | 16 | adantr 482 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴)) |
18 | 12, 17 | bitrd 279 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < 𝐴)) |
19 | 18 | rexbidva 3174 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛 ↔ ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)) |
20 | 5, 19 | mpbid 231 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∃wrex 3074 class class class wbr 5106 (class class class)co 7358 ℂcc 11050 ℝcr 11051 0cc0 11052 1c1 11053 < clt 11190 / cdiv 11813 ℕcn 12154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 ax-pre-sup 11130 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-nn 12155 |
This theorem is referenced by: qbtwnre 13119 met1stc 23880 met2ndci 23881 bcthlem4 24694 ismbf3d 25021 itg2seq 25110 itg2gt0 25128 |
Copyright terms: Public domain | W3C validator |