MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnrecl Structured version   Visualization version   GIF version

Theorem nnrecl 12161
Description: There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
Assertion
Ref Expression
nnrecl ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Distinct variable group:   𝐴,𝑛

Proof of Theorem nnrecl
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 gt0ne0 11370 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
31, 2rereccld 11732 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
4 arch 12160 . . 3 ((1 / 𝐴) ∈ ℝ → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛)
53, 4syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛)
6 recgt0 11751 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
73, 6jca 511 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴)))
8 nnre 11910 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 nngt0 11934 . . . . . 6 (𝑛 ∈ ℕ → 0 < 𝑛)
108, 9jca 511 . . . . 5 (𝑛 ∈ ℕ → (𝑛 ∈ ℝ ∧ 0 < 𝑛))
11 ltrec 11787 . . . . 5 ((((1 / 𝐴) ∈ ℝ ∧ 0 < (1 / 𝐴)) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴))))
127, 10, 11syl2an 595 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < (1 / (1 / 𝐴))))
13 recn 10892 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1413adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
1514, 2recrecd 11678 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / (1 / 𝐴)) = 𝐴)
1615breq2d 5082 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴))
1716adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < (1 / (1 / 𝐴)) ↔ (1 / 𝑛) < 𝐴))
1812, 17bitrd 278 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴) < 𝑛 ↔ (1 / 𝑛) < 𝐴))
1918rexbidva 3224 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (∃𝑛 ∈ ℕ (1 / 𝐴) < 𝑛 ↔ ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴))
205, 19mpbid 231 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑛 ∈ ℕ (1 / 𝑛) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wrex 3064   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   < clt 10940   / cdiv 11562  cn 11903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904
This theorem is referenced by:  qbtwnre  12862  met1stc  23583  met2ndci  23584  bcthlem4  24396  ismbf3d  24723  itg2seq  24812  itg2gt0  24830
  Copyright terms: Public domain W3C validator