Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrpropedg | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020.) (Revised by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rusgrpropnb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrpropedg | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrpropnb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | rusgrpropnb 28238 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) |
3 | eqid 2737 | . . . . . . . . 9 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 1, 3 | nbedgusgr 28027 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒})) |
5 | 4 | eqeq1d 2739 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ↔ (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
6 | 5 | biimpd 228 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
7 | 6 | ralimdva 3161 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
8 | 7 | adantr 482 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
9 | 8 | imdistani 570 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
10 | df-3an 1089 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) ↔ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) | |
11 | df-3an 1089 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾) ↔ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) | |
12 | 9, 10, 11 | 3imtr4i 292 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
13 | 2, 12 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 {crab 3404 class class class wbr 5096 ‘cfv 6483 (class class class)co 7341 ℕ0*cxnn0 12410 ♯chash 14149 Vtxcvtx 27654 Edgcedg 27705 USGraphcusgr 27807 NeighbVtx cnbgr 27987 RegUSGraph crusgr 28211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-oadd 8375 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-dju 9762 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-n0 12339 df-xnn0 12411 df-z 12425 df-uz 12688 df-xadd 12954 df-fz 13345 df-hash 14150 df-edg 27706 df-uhgr 27716 df-ushgr 27717 df-upgr 27740 df-umgr 27741 df-uspgr 27808 df-usgr 27809 df-nbgr 27988 df-vtxdg 28121 df-rgr 28212 df-rusgr 28213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |