![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrpropedg | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020.) (Revised by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
rusgrpropnb.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrpropedg | ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrpropnb.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | rusgrpropnb 29515 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) |
3 | eqid 2726 | . . . . . . . . 9 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 1, 3 | nbedgusgr 29303 | . . . . . . . 8 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒})) |
5 | 4 | eqeq1d 2728 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ↔ (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
6 | 5 | biimpd 228 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
7 | 6 | ralimdva 3157 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
8 | 7 | adantr 479 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
9 | 8 | imdistani 567 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
10 | df-3an 1086 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) ↔ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)) | |
11 | df-3an 1086 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾) ↔ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) | |
12 | 9, 10, 11 | 3imtr4i 291 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
13 | 2, 12 | syl 17 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣 ∈ 𝑒}) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3420 class class class wbr 5144 ‘cfv 6544 (class class class)co 7414 ℕ0*cxnn0 12588 ♯chash 14340 Vtxcvtx 28927 Edgcedg 28978 USGraphcusgr 29080 NeighbVtx cnbgr 29263 RegUSGraph crusgr 29488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-2o 8487 df-oadd 8490 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9935 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-n0 12517 df-xnn0 12589 df-z 12603 df-uz 12867 df-xadd 13139 df-fz 13531 df-hash 14341 df-edg 28979 df-uhgr 28989 df-ushgr 28990 df-upgr 29013 df-umgr 29014 df-uspgr 29081 df-usgr 29082 df-nbgr 29264 df-vtxdg 29398 df-rgr 29489 df-rusgr 29490 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |