MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrpropedg Structured version   Visualization version   GIF version

Theorem rusgrpropedg 28239
Description: The properties of a k-regular simple graph expressed with edges. (Contributed by AV, 23-Dec-2020.) (Revised by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
rusgrpropnb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrpropedg (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑒,𝐺,𝑣
Allowed substitution hints:   𝐾(𝑒)   𝑉(𝑣,𝑒)

Proof of Theorem rusgrpropedg
StepHypRef Expression
1 rusgrpropnb.v . . 3 𝑉 = (Vtx‘𝐺)
21rusgrpropnb 28238 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
3 eqid 2737 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
41, 3nbedgusgr 28027 . . . . . . . 8 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}))
54eqeq1d 2739 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ↔ (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
65biimpd 228 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
76ralimdva 3161 . . . . 5 (𝐺 ∈ USGraph → (∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
87adantr 482 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 → ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
98imdistani 570 . . 3 (((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
10 df-3an 1089 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) ↔ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
11 df-3an 1089 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾) ↔ ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
129, 10, 113imtr4i 292 . 2 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
132, 12syl 17 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑣𝑒}) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  {crab 3404   class class class wbr 5096  cfv 6483  (class class class)co 7341  0*cxnn0 12410  chash 14149  Vtxcvtx 27654  Edgcedg 27705  USGraphcusgr 27807   NeighbVtx cnbgr 27987   RegUSGraph crusgr 28211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-oadd 8375  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-dju 9762  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-n0 12339  df-xnn0 12411  df-z 12425  df-uz 12688  df-xadd 12954  df-fz 13345  df-hash 14150  df-edg 27706  df-uhgr 27716  df-ushgr 27717  df-upgr 27740  df-umgr 27741  df-uspgr 27808  df-usgr 27809  df-nbgr 27988  df-vtxdg 28121  df-rgr 28212  df-rusgr 28213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator