Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fperiodmullem Structured version   Visualization version   GIF version

Theorem fperiodmullem 42732
Description: A function with period 𝑇 is also periodic with period nonnegative multiple of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fperiodmullem.f (𝜑𝐹:ℝ⟶ℂ)
fperiodmullem.t (𝜑𝑇 ∈ ℝ)
fperiodmullem.n (𝜑𝑁 ∈ ℕ0)
fperiodmullem.x (𝜑𝑋 ∈ ℝ)
fperiodmullem.per ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
Assertion
Ref Expression
fperiodmullem (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑇   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem fperiodmullem
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fperiodmullem.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq1 7262 . . . . . 6 (𝑛 = 0 → (𝑛 · 𝑇) = (0 · 𝑇))
32oveq2d 7271 . . . . 5 (𝑛 = 0 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (0 · 𝑇)))
43fveqeq2d 6764 . . . 4 (𝑛 = 0 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹𝑋)))
54imbi2d 340 . . 3 (𝑛 = 0 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹𝑋))))
6 oveq1 7262 . . . . . 6 (𝑛 = 𝑚 → (𝑛 · 𝑇) = (𝑚 · 𝑇))
76oveq2d 7271 . . . . 5 (𝑛 = 𝑚 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (𝑚 · 𝑇)))
87fveqeq2d 6764 . . . 4 (𝑛 = 𝑚 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)))
98imbi2d 340 . . 3 (𝑛 = 𝑚 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))))
10 oveq1 7262 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑇) = ((𝑚 + 1) · 𝑇))
1110oveq2d 7271 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + ((𝑚 + 1) · 𝑇)))
1211fveqeq2d 6764 . . . 4 (𝑛 = (𝑚 + 1) → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋)))
1312imbi2d 340 . . 3 (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))))
14 oveq1 7262 . . . . . 6 (𝑛 = 𝑁 → (𝑛 · 𝑇) = (𝑁 · 𝑇))
1514oveq2d 7271 . . . . 5 (𝑛 = 𝑁 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (𝑁 · 𝑇)))
1615fveqeq2d 6764 . . . 4 (𝑛 = 𝑁 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋) ↔ (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋)))
1716imbi2d 340 . . 3 (𝑛 = 𝑁 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))))
18 fperiodmullem.t . . . . . . . 8 (𝜑𝑇 ∈ ℝ)
1918recnd 10934 . . . . . . 7 (𝜑𝑇 ∈ ℂ)
2019mul02d 11103 . . . . . 6 (𝜑 → (0 · 𝑇) = 0)
2120oveq2d 7271 . . . . 5 (𝜑 → (𝑋 + (0 · 𝑇)) = (𝑋 + 0))
22 fperiodmullem.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
2322recnd 10934 . . . . . 6 (𝜑𝑋 ∈ ℂ)
2423addid1d 11105 . . . . 5 (𝜑 → (𝑋 + 0) = 𝑋)
2521, 24eqtrd 2778 . . . 4 (𝜑 → (𝑋 + (0 · 𝑇)) = 𝑋)
2625fveq2d 6760 . . 3 (𝜑 → (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹𝑋))
27 simp3 1136 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → 𝜑)
28 simp1 1134 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → 𝑚 ∈ ℕ0)
29 simpr 484 . . . . . . 7 (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → 𝜑)
30 simpl 482 . . . . . . 7 (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)))
3129, 30mpd 15 . . . . . 6 (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))
32313adant1 1128 . . . . 5 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))
33 nn0cn 12173 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
3433adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
35 1cnd 10901 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
3619adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑇 ∈ ℂ)
3734, 35, 36adddird 10931 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑇) = ((𝑚 · 𝑇) + (1 · 𝑇)))
3837oveq2d 7271 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑋 + ((𝑚 + 1) · 𝑇)) = (𝑋 + ((𝑚 · 𝑇) + (1 · 𝑇))))
3923adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑋 ∈ ℂ)
4034, 36mulcld 10926 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · 𝑇) ∈ ℂ)
4135, 36mulcld 10926 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 · 𝑇) ∈ ℂ)
4239, 40, 41addassd 10928 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑋 + (𝑚 · 𝑇)) + (1 · 𝑇)) = (𝑋 + ((𝑚 · 𝑇) + (1 · 𝑇))))
4336mulid2d 10924 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 · 𝑇) = 𝑇)
4443oveq2d 7271 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((𝑋 + (𝑚 · 𝑇)) + (1 · 𝑇)) = ((𝑋 + (𝑚 · 𝑇)) + 𝑇))
4538, 42, 443eqtr2d 2784 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑋 + ((𝑚 + 1) · 𝑇)) = ((𝑋 + (𝑚 · 𝑇)) + 𝑇))
4645fveq2d 6760 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)))
47463adant3 1130 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)))
4822adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 𝑋 ∈ ℝ)
49 nn0re 12172 . . . . . . . . . . 11 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
5049adantl 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
5118adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑇 ∈ ℝ)
5250, 51remulcld 10936 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (𝑚 · 𝑇) ∈ ℝ)
5348, 52readdcld 10935 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝑋 + (𝑚 · 𝑇)) ∈ ℝ)
5453ex 412 . . . . . . . . 9 (𝜑 → (𝑚 ∈ ℕ0 → (𝑋 + (𝑚 · 𝑇)) ∈ ℝ))
5554imdistani 568 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ))
56 eleq1 2826 . . . . . . . . . . 11 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝑥 ∈ ℝ ↔ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ))
5756anbi2d 628 . . . . . . . . . 10 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → ((𝜑𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ)))
58 fvoveq1 7278 . . . . . . . . . . 11 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)))
59 fveq2 6756 . . . . . . . . . . 11 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝐹𝑥) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))
6058, 59eqeq12d 2754 . . . . . . . . . 10 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → ((𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥) ↔ (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))))
6157, 60imbi12d 344 . . . . . . . . 9 (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥)) ↔ ((𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))))
62 fperiodmullem.per . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
6361, 62vtoclg 3495 . . . . . . . 8 ((𝑋 + (𝑚 · 𝑇)) ∈ ℝ → ((𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))))
6453, 55, 63sylc 65 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))
65643adant3 1130 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))
66 simp3 1136 . . . . . 6 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋))
6747, 65, 663eqtrd 2782 . . . . 5 ((𝜑𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))
6827, 28, 32, 67syl3anc 1369 . . . 4 ((𝑚 ∈ ℕ0 ∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))
69683exp 1117 . . 3 (𝑚 ∈ ℕ0 → ((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹𝑋)) → (𝜑 → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹𝑋))))
705, 9, 13, 17, 26, 69nn0ind 12345 . 2 (𝑁 ∈ ℕ0 → (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋)))
711, 70mpcom 38 1 (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250
This theorem is referenced by:  fperiodmul  42733
  Copyright terms: Public domain W3C validator