Step | Hyp | Ref
| Expression |
1 | | fperiodmullem.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq1 7262 |
. . . . . 6
⊢ (𝑛 = 0 → (𝑛 · 𝑇) = (0 · 𝑇)) |
3 | 2 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = 0 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (0 · 𝑇))) |
4 | 3 | fveqeq2d 6764 |
. . . 4
⊢ (𝑛 = 0 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋) ↔ (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹‘𝑋))) |
5 | 4 | imbi2d 340 |
. . 3
⊢ (𝑛 = 0 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹‘𝑋)))) |
6 | | oveq1 7262 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (𝑛 · 𝑇) = (𝑚 · 𝑇)) |
7 | 6 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (𝑚 · 𝑇))) |
8 | 7 | fveqeq2d 6764 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋) ↔ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋))) |
9 | 8 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑚 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)))) |
10 | | oveq1 7262 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (𝑛 · 𝑇) = ((𝑚 + 1) · 𝑇)) |
11 | 10 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + ((𝑚 + 1) · 𝑇))) |
12 | 11 | fveqeq2d 6764 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋) ↔ (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘𝑋))) |
13 | 12 | imbi2d 340 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘𝑋)))) |
14 | | oveq1 7262 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑛 · 𝑇) = (𝑁 · 𝑇)) |
15 | 14 | oveq2d 7271 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑋 + (𝑛 · 𝑇)) = (𝑋 + (𝑁 · 𝑇))) |
16 | 15 | fveqeq2d 6764 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋) ↔ (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋))) |
17 | 16 | imbi2d 340 |
. . 3
⊢ (𝑛 = 𝑁 → ((𝜑 → (𝐹‘(𝑋 + (𝑛 · 𝑇))) = (𝐹‘𝑋)) ↔ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)))) |
18 | | fperiodmullem.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ ℝ) |
19 | 18 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ∈ ℂ) |
20 | 19 | mul02d 11103 |
. . . . . 6
⊢ (𝜑 → (0 · 𝑇) = 0) |
21 | 20 | oveq2d 7271 |
. . . . 5
⊢ (𝜑 → (𝑋 + (0 · 𝑇)) = (𝑋 + 0)) |
22 | | fperiodmullem.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
23 | 22 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
24 | 23 | addid1d 11105 |
. . . . 5
⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
25 | 21, 24 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (𝑋 + (0 · 𝑇)) = 𝑋) |
26 | 25 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (𝐹‘(𝑋 + (0 · 𝑇))) = (𝐹‘𝑋)) |
27 | | simp3 1136 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) ∧ 𝜑) → 𝜑) |
28 | | simp1 1134 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) ∧ 𝜑) → 𝑚 ∈ ℕ0) |
29 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) ∧ 𝜑) → 𝜑) |
30 | | simpl 482 |
. . . . . . 7
⊢ (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) ∧ 𝜑) → (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋))) |
31 | 29, 30 | mpd 15 |
. . . . . 6
⊢ (((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) |
32 | 31 | 3adant1 1128 |
. . . . 5
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) |
33 | | nn0cn 12173 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
34 | 33 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℂ) |
35 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 1 ∈
ℂ) |
36 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑇 ∈
ℂ) |
37 | 34, 35, 36 | adddird 10931 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑚 + 1) · 𝑇) = ((𝑚 · 𝑇) + (1 · 𝑇))) |
38 | 37 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑋 + ((𝑚 + 1) · 𝑇)) = (𝑋 + ((𝑚 · 𝑇) + (1 · 𝑇)))) |
39 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑋 ∈
ℂ) |
40 | 34, 36 | mulcld 10926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑇) ∈ ℂ) |
41 | 35, 36 | mulcld 10926 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (1
· 𝑇) ∈
ℂ) |
42 | 39, 40, 41 | addassd 10928 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑋 + (𝑚 · 𝑇)) + (1 · 𝑇)) = (𝑋 + ((𝑚 · 𝑇) + (1 · 𝑇)))) |
43 | 36 | mulid2d 10924 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (1
· 𝑇) = 𝑇) |
44 | 43 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑋 + (𝑚 · 𝑇)) + (1 · 𝑇)) = ((𝑋 + (𝑚 · 𝑇)) + 𝑇)) |
45 | 38, 42, 44 | 3eqtr2d 2784 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑋 + ((𝑚 + 1) · 𝑇)) = ((𝑋 + (𝑚 · 𝑇)) + 𝑇)) |
46 | 45 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇))) |
47 | 46 | 3adant3 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇))) |
48 | 22 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑋 ∈
ℝ) |
49 | | nn0re 12172 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℝ) |
50 | 49 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℝ) |
51 | 18 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑇 ∈
ℝ) |
52 | 50, 51 | remulcld 10936 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑚 · 𝑇) ∈ ℝ) |
53 | 48, 52 | readdcld 10935 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝑋 + (𝑚 · 𝑇)) ∈ ℝ) |
54 | 53 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ ℕ0 → (𝑋 + (𝑚 · 𝑇)) ∈ ℝ)) |
55 | 54 | imdistani 568 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ)) |
56 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝑥 ∈ ℝ ↔ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ)) |
57 | 56 | anbi2d 628 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑋 + (𝑚 · 𝑇)) → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ))) |
58 | | fvoveq1 7278 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇))) |
59 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (𝐹‘𝑥) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))) |
60 | 58, 59 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑋 + (𝑚 · 𝑇)) → ((𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥) ↔ (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))) |
61 | 57, 60 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = (𝑋 + (𝑚 · 𝑇)) → (((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) ↔ ((𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))))) |
62 | | fperiodmullem.per |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) |
63 | 61, 62 | vtoclg 3495 |
. . . . . . . 8
⊢ ((𝑋 + (𝑚 · 𝑇)) ∈ ℝ → ((𝜑 ∧ (𝑋 + (𝑚 · 𝑇)) ∈ ℝ) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇))))) |
64 | 53, 55, 63 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))) |
65 | 64 | 3adant3 1130 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) → (𝐹‘((𝑋 + (𝑚 · 𝑇)) + 𝑇)) = (𝐹‘(𝑋 + (𝑚 · 𝑇)))) |
66 | | simp3 1136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) |
67 | 47, 65, 66 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0 ∧ (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘𝑋)) |
68 | 27, 28, 32, 67 | syl3anc 1369 |
. . . 4
⊢ ((𝑚 ∈ ℕ0
∧ (𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) ∧ 𝜑) → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘𝑋)) |
69 | 68 | 3exp 1117 |
. . 3
⊢ (𝑚 ∈ ℕ0
→ ((𝜑 → (𝐹‘(𝑋 + (𝑚 · 𝑇))) = (𝐹‘𝑋)) → (𝜑 → (𝐹‘(𝑋 + ((𝑚 + 1) · 𝑇))) = (𝐹‘𝑋)))) |
70 | 5, 9, 13, 17, 26, 69 | nn0ind 12345 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋))) |
71 | 1, 70 | mpcom 38 |
1
⊢ (𝜑 → (𝐹‘(𝑋 + (𝑁 · 𝑇))) = (𝐹‘𝑋)) |