MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2b2 Structured version   Visualization version   GIF version

Theorem eluz2b2 12948
Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))

Proof of Theorem eluz2b2
StepHypRef Expression
1 eluz2b1 12946 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
2 1re 11252 . . . . . . 7 1 ∈ ℝ
3 zre 12605 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4 ltle 11340 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (1 < 𝑁 → 1 ≤ 𝑁))
52, 3, 4sylancr 585 . . . . . 6 (𝑁 ∈ ℤ → (1 < 𝑁 → 1 ≤ 𝑁))
65imdistani 567 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
7 elnnz1 12631 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
86, 7sylibr 233 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ)
9 simpr 483 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 1 < 𝑁)
108, 9jca 510 . . 3 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
11 nnz 12622 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1211anim1i 613 . . 3 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 < 𝑁))
1310, 12impbii 208 . 2 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
141, 13bitri 274 1 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099   class class class wbr 5143  cfv 6543  cr 11145  1c1 11147   < clt 11286  cle 11287  cn 12255  2c2 12310  cz 12601  cuz 12865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-n0 12516  df-z 12602  df-uz 12866
This theorem is referenced by:  eluz2b3  12949  nprmi  16682  ge2nprmge4  16694  pockthlem  16899  prmunb  16908  prmlem1a  17101  sylow3lem6  19623  chtge0  27134  muval1  27155  chtwordi  27178  vma1  27188  mersenne  27250  perfectlem2  27253  lgsne0  27358  chtppilimlem1  27496  padicabvcxp  27655  ostth2lem3  27658  ostth2lem4  27659  ostth2  27660  ostth3  27661  umgr2cwwkdifex  29992  ex-mod  30376  rmspecnonsq  42598  rmspecfund  42600  ltrmxnn0  42641  itgsinexp  45609  wallispilem3  45721  fmtno4prm  47180  perfectALTVlem2  47327
  Copyright terms: Public domain W3C validator