MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2b2 Structured version   Visualization version   GIF version

Theorem eluz2b2 12937
Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))

Proof of Theorem eluz2b2
StepHypRef Expression
1 eluz2b1 12935 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
2 1re 11235 . . . . . . 7 1 ∈ ℝ
3 zre 12592 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4 ltle 11323 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (1 < 𝑁 → 1 ≤ 𝑁))
52, 3, 4sylancr 587 . . . . . 6 (𝑁 ∈ ℤ → (1 < 𝑁 → 1 ≤ 𝑁))
65imdistani 568 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
7 elnnz1 12618 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
86, 7sylibr 234 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ)
9 simpr 484 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 1 < 𝑁)
108, 9jca 511 . . 3 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
11 nnz 12609 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1211anim1i 615 . . 3 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 < 𝑁))
1310, 12impbii 209 . 2 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
141, 13bitri 275 1 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5119  cfv 6531  cr 11128  1c1 11130   < clt 11269  cle 11270  cn 12240  2c2 12295  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853
This theorem is referenced by:  eluz2b3  12938  nprmi  16708  ge2nprmge4  16720  pockthlem  16925  prmunb  16934  prmlem1a  17126  sylow3lem6  19613  chtge0  27074  muval1  27095  chtwordi  27118  vma1  27128  mersenne  27190  perfectlem2  27193  lgsne0  27298  chtppilimlem1  27436  padicabvcxp  27595  ostth2lem3  27598  ostth2lem4  27599  ostth2  27600  ostth3  27601  umgr2cwwkdifex  30046  ex-mod  30430  rmspecnonsq  42930  rmspecfund  42932  ltrmxnn0  42973  itgsinexp  45984  wallispilem3  46096  fmtno4prm  47589  perfectALTVlem2  47736
  Copyright terms: Public domain W3C validator