MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2b2 Structured version   Visualization version   GIF version

Theorem eluz2b2 12935
Description: Two ways to say "an integer greater than or equal to 2". (Contributed by Paul Chapman, 23-Nov-2012.)
Assertion
Ref Expression
eluz2b2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))

Proof of Theorem eluz2b2
StepHypRef Expression
1 eluz2b1 12933 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
2 1re 11244 . . . . . . 7 1 ∈ ℝ
3 zre 12592 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4 ltle 11332 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (1 < 𝑁 → 1 ≤ 𝑁))
52, 3, 4sylancr 586 . . . . . 6 (𝑁 ∈ ℤ → (1 < 𝑁 → 1 ≤ 𝑁))
65imdistani 568 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
7 elnnz1 12618 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁))
86, 7sylibr 233 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 𝑁 ∈ ℕ)
9 simpr 484 . . . 4 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → 1 < 𝑁)
108, 9jca 511 . . 3 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
11 nnz 12609 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1211anim1i 614 . . 3 ((𝑁 ∈ ℕ ∧ 1 < 𝑁) → (𝑁 ∈ ℤ ∧ 1 < 𝑁))
1310, 12impbii 208 . 2 ((𝑁 ∈ ℤ ∧ 1 < 𝑁) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
141, 13bitri 275 1 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099   class class class wbr 5148  cfv 6548  cr 11137  1c1 11139   < clt 11278  cle 11279  cn 12242  2c2 12297  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853
This theorem is referenced by:  eluz2b3  12936  nprmi  16659  ge2nprmge4  16671  pockthlem  16873  prmunb  16882  prmlem1a  17075  sylow3lem6  19586  chtge0  27043  muval1  27064  chtwordi  27087  vma1  27097  mersenne  27159  perfectlem2  27162  lgsne0  27267  chtppilimlem1  27405  padicabvcxp  27564  ostth2lem3  27567  ostth2lem4  27568  ostth2  27569  ostth3  27570  umgr2cwwkdifex  29874  ex-mod  30258  rmspecnonsq  42327  rmspecfund  42329  ltrmxnn0  42370  itgsinexp  45343  wallispilem3  45455  fmtno4prm  46915  perfectALTVlem2  47062
  Copyright terms: Public domain W3C validator