Proof of Theorem dihord2pre2
Step | Hyp | Ref
| Expression |
1 | | dihjust.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | dihjust.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | dihjust.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | dihjust.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | | dihjust.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | dihjust.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | dihjust.i |
. . 3
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
8 | | dihjust.J |
. . 3
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
9 | | dihjust.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
10 | | dihjust.s |
. . 3
⊢ ⊕ =
(LSSum‘𝑈) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dihord2a 39233 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑄 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
12 | | simp11l 1283 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝐾 ∈ HL) |
13 | 12 | hllatd 37378 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝐾 ∈ Lat) |
14 | | simp2l 1198 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑋 ∈ 𝐵) |
15 | | simp11r 1284 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑊 ∈ 𝐻) |
16 | 1, 6 | lhpbase 38012 |
. . . . 5
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑊 ∈ 𝐵) |
18 | 1, 4 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
19 | 13, 14, 17, 18 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
20 | | simp2r 1199 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑌 ∈ 𝐵) |
21 | 1, 4 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
22 | 13, 20, 17, 21 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑌 ∧ 𝑊) ∈ 𝐵) |
23 | | simp13l 1287 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑁 ∈ 𝐴) |
24 | 1, 5 | atbase 37303 |
. . . . 5
⊢ (𝑁 ∈ 𝐴 → 𝑁 ∈ 𝐵) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑁 ∈ 𝐵) |
26 | 1, 3 | latjcl 18157 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑁 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
27 | 13, 25, 22, 26 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵) |
28 | | simp33 1210 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
29 | | dihord2c.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
30 | | dihord2c.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
31 | | dihord2c.o |
. . . . 5
⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
32 | | dihord2.p |
. . . . 5
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
33 | | dihord2.e |
. . . . 5
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
34 | | dihord2.d |
. . . . 5
⊢ + =
(+g‘𝑈) |
35 | | dihord2.g |
. . . . 5
⊢ 𝐺 = (℩ℎ ∈ 𝑇 (ℎ‘𝑃) = 𝑁) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
29, 30, 31, 32, 33, 34, 35 | dihord2pre 39239 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |
37 | 28, 36 | syld3an3 1408 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑋 ∧ 𝑊) ≤ (𝑌 ∧ 𝑊)) |
38 | 1, 2, 3 | latlej2 18167 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑁 ∈ 𝐵 ∧ (𝑌 ∧ 𝑊) ∈ 𝐵) → (𝑌 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
39 | 13, 25, 22, 38 | syl3anc 1370 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑌 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
40 | 1, 2, 13, 19, 22, 27, 37, 39 | lattrd 18164 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |
41 | | simp12l 1285 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑄 ∈ 𝐴) |
42 | 1, 5 | atbase 37303 |
. . . 4
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
43 | 41, 42 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → 𝑄 ∈ 𝐵) |
44 | 1, 2, 3 | latjle12 18168 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) ∈ 𝐵)) → ((𝑄 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)) ∧ (𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) ↔ (𝑄 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
45 | 13, 43, 19, 27, 44 | syl13anc 1371 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → ((𝑄 ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)) ∧ (𝑋 ∧ 𝑊) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) ↔ (𝑄 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊)))) |
46 | 11, 40, 45 | mpbi2and 709 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑁 ∨ (𝑌 ∧ 𝑊)) = 𝑌 ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑁) ⊕ (𝐼‘(𝑌 ∧ 𝑊))))) → (𝑄 ∨ (𝑋 ∧ 𝑊)) ≤ (𝑁 ∨ (𝑌 ∧ 𝑊))) |