Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacubnd Structured version   Visualization version   GIF version

Theorem logfacubnd 25904
 Description: A simple upper bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.)
Assertion
Ref Expression
logfacubnd ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴)))

Proof of Theorem logfacubnd
StepHypRef Expression
1 rpre 12438 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
2 flge1nn 13240 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
31, 2sylan 583 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ)
43nnnn0d 11994 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
54faccld 13694 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℕ)
65nnrpd 12470 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℝ+)
76relogcld 25313 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
81adantr 484 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
9 reflcl 13215 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
108, 9syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℝ)
113nnrpd 12470 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℝ+)
1211relogcld 25313 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(⌊‘𝐴)) ∈ ℝ)
1310, 12remulcld 10709 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ∈ ℝ)
14 relogcl 25266 . . . 4 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1514adantr 484 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
168, 15remulcld 10709 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · (log‘𝐴)) ∈ ℝ)
17 facubnd 13710 . . . . 5 ((⌊‘𝐴) ∈ ℕ0 → (!‘(⌊‘𝐴)) ≤ ((⌊‘𝐴)↑(⌊‘𝐴)))
184, 17syl 17 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ≤ ((⌊‘𝐴)↑(⌊‘𝐴)))
193, 4nnexpcld 13656 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴)↑(⌊‘𝐴)) ∈ ℕ)
2019nnrpd 12470 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴)↑(⌊‘𝐴)) ∈ ℝ+)
216, 20logled 25317 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((!‘(⌊‘𝐴)) ≤ ((⌊‘𝐴)↑(⌊‘𝐴)) ↔ (log‘(!‘(⌊‘𝐴))) ≤ (log‘((⌊‘𝐴)↑(⌊‘𝐴)))))
2218, 21mpbid 235 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ (log‘((⌊‘𝐴)↑(⌊‘𝐴))))
233nnzd 12125 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ)
24 relogexp 25286 . . . 4 (((⌊‘𝐴) ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℤ) → (log‘((⌊‘𝐴)↑(⌊‘𝐴))) = ((⌊‘𝐴) · (log‘(⌊‘𝐴))))
2511, 23, 24syl2anc 587 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘((⌊‘𝐴)↑(⌊‘𝐴))) = ((⌊‘𝐴) · (log‘(⌊‘𝐴))))
2622, 25breqtrd 5058 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ ((⌊‘𝐴) · (log‘(⌊‘𝐴))))
27 flle 13218 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
288, 27syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ≤ 𝐴)
29 simpl 486 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
3011, 29logled 25317 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) ≤ 𝐴 ↔ (log‘(⌊‘𝐴)) ≤ (log‘𝐴)))
3128, 30mpbid 235 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(⌊‘𝐴)) ≤ (log‘𝐴))
3211rprege0d 12479 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) ∈ ℝ ∧ 0 ≤ (⌊‘𝐴)))
33 log1 25276 . . . . . 6 (log‘1) = 0
343nnge1d 11722 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (⌊‘𝐴))
35 1rp 12434 . . . . . . . 8 1 ∈ ℝ+
36 logleb 25293 . . . . . . . 8 ((1 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℝ+) → (1 ≤ (⌊‘𝐴) ↔ (log‘1) ≤ (log‘(⌊‘𝐴))))
3735, 11, 36sylancr 590 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (1 ≤ (⌊‘𝐴) ↔ (log‘1) ≤ (log‘(⌊‘𝐴))))
3834, 37mpbid 235 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘1) ≤ (log‘(⌊‘𝐴)))
3933, 38eqbrtrrid 5068 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘(⌊‘𝐴)))
4012, 39jca 515 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (log‘(⌊‘𝐴))))
41 lemul12a 11536 . . . 4 (((((⌊‘𝐴) ∈ ℝ ∧ 0 ≤ (⌊‘𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (((log‘(⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (log‘(⌊‘𝐴))) ∧ (log‘𝐴) ∈ ℝ)) → (((⌊‘𝐴) ≤ 𝐴 ∧ (log‘(⌊‘𝐴)) ≤ (log‘𝐴)) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴))))
4232, 8, 40, 15, 41syl22anc 837 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((⌊‘𝐴) ≤ 𝐴 ∧ (log‘(⌊‘𝐴)) ≤ (log‘𝐴)) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴))))
4328, 31, 42mp2and 698 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴)))
447, 13, 16, 26, 43letrd 10835 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  ℝcr 10574  0cc0 10575  1c1 10576   · cmul 10580   ≤ cle 10714  ℕcn 11674  ℕ0cn0 11934  ℤcz 12020  ℝ+crp 12430  ⌊cfl 13209  ↑cexp 13479  !cfa 13683  logclog 25245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator