| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logfacubnd | Structured version Visualization version GIF version | ||
| Description: A simple upper bound on the logarithm of a factorial. (Contributed by Mario Carneiro, 16-Apr-2016.) |
| Ref | Expression |
|---|---|
| logfacubnd | ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12909 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | flge1nn 13735 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ) | |
| 3 | 1, 2 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ) |
| 4 | 3 | nnnn0d 12452 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0) |
| 5 | 4 | faccld 14201 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℕ) |
| 6 | 5 | nnrpd 12942 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℝ+) |
| 7 | 6 | relogcld 26569 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ∈ ℝ) |
| 8 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ) |
| 9 | reflcl 13710 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℝ) |
| 11 | 3 | nnrpd 12942 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℝ+) |
| 12 | 11 | relogcld 26569 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(⌊‘𝐴)) ∈ ℝ) |
| 13 | 10, 12 | remulcld 11152 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ∈ ℝ) |
| 14 | relogcl 26521 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ) |
| 16 | 8, 15 | remulcld 11152 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · (log‘𝐴)) ∈ ℝ) |
| 17 | facubnd 14217 | . . . . 5 ⊢ ((⌊‘𝐴) ∈ ℕ0 → (!‘(⌊‘𝐴)) ≤ ((⌊‘𝐴)↑(⌊‘𝐴))) | |
| 18 | 4, 17 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ≤ ((⌊‘𝐴)↑(⌊‘𝐴))) |
| 19 | 3, 4 | nnexpcld 14162 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴)↑(⌊‘𝐴)) ∈ ℕ) |
| 20 | 19 | nnrpd 12942 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴)↑(⌊‘𝐴)) ∈ ℝ+) |
| 21 | 6, 20 | logled 26573 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((!‘(⌊‘𝐴)) ≤ ((⌊‘𝐴)↑(⌊‘𝐴)) ↔ (log‘(!‘(⌊‘𝐴))) ≤ (log‘((⌊‘𝐴)↑(⌊‘𝐴))))) |
| 22 | 18, 21 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ (log‘((⌊‘𝐴)↑(⌊‘𝐴)))) |
| 23 | 3 | nnzd 12505 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℤ) |
| 24 | relogexp 26542 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℤ) → (log‘((⌊‘𝐴)↑(⌊‘𝐴))) = ((⌊‘𝐴) · (log‘(⌊‘𝐴)))) | |
| 25 | 11, 23, 24 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘((⌊‘𝐴)↑(⌊‘𝐴))) = ((⌊‘𝐴) · (log‘(⌊‘𝐴)))) |
| 26 | 22, 25 | breqtrd 5121 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ ((⌊‘𝐴) · (log‘(⌊‘𝐴)))) |
| 27 | flle 13713 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 28 | 8, 27 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ≤ 𝐴) |
| 29 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+) | |
| 30 | 11, 29 | logled 26573 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) ≤ 𝐴 ↔ (log‘(⌊‘𝐴)) ≤ (log‘𝐴))) |
| 31 | 28, 30 | mpbid 232 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(⌊‘𝐴)) ≤ (log‘𝐴)) |
| 32 | 11 | rprege0d 12951 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) ∈ ℝ ∧ 0 ≤ (⌊‘𝐴))) |
| 33 | log1 26531 | . . . . . 6 ⊢ (log‘1) = 0 | |
| 34 | 3 | nnge1d 12183 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (⌊‘𝐴)) |
| 35 | 1rp 12904 | . . . . . . . 8 ⊢ 1 ∈ ℝ+ | |
| 36 | logleb 26549 | . . . . . . . 8 ⊢ ((1 ∈ ℝ+ ∧ (⌊‘𝐴) ∈ ℝ+) → (1 ≤ (⌊‘𝐴) ↔ (log‘1) ≤ (log‘(⌊‘𝐴)))) | |
| 37 | 35, 11, 36 | sylancr 587 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (1 ≤ (⌊‘𝐴) ↔ (log‘1) ≤ (log‘(⌊‘𝐴)))) |
| 38 | 34, 37 | mpbid 232 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘1) ≤ (log‘(⌊‘𝐴))) |
| 39 | 33, 38 | eqbrtrrid 5131 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ≤ (log‘(⌊‘𝐴))) |
| 40 | 12, 39 | jca 511 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (log‘(⌊‘𝐴)))) |
| 41 | lemul12a 11989 | . . . 4 ⊢ (((((⌊‘𝐴) ∈ ℝ ∧ 0 ≤ (⌊‘𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (((log‘(⌊‘𝐴)) ∈ ℝ ∧ 0 ≤ (log‘(⌊‘𝐴))) ∧ (log‘𝐴) ∈ ℝ)) → (((⌊‘𝐴) ≤ 𝐴 ∧ (log‘(⌊‘𝐴)) ≤ (log‘𝐴)) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴)))) | |
| 42 | 32, 8, 40, 15, 41 | syl22anc 838 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((⌊‘𝐴) ≤ 𝐴 ∧ (log‘(⌊‘𝐴)) ≤ (log‘𝐴)) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴)))) |
| 43 | 28, 31, 42 | mp2and 699 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((⌊‘𝐴) · (log‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴))) |
| 44 | 7, 13, 16, 26, 43 | letrd 11280 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ≤ (𝐴 · (log‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 0cc0 11016 1c1 11017 · cmul 11021 ≤ cle 11157 ℕcn 12135 ℕ0cn0 12391 ℤcz 12478 ℝ+crp 12900 ⌊cfl 13704 ↑cexp 13978 !cfa 14190 logclog 26500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 ax-addf 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-q 12857 df-rp 12901 df-xneg 13021 df-xadd 13022 df-xmul 13023 df-ioo 13259 df-ioc 13260 df-ico 13261 df-icc 13262 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-fac 14191 df-bc 14220 df-hash 14248 df-shft 14984 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-limsup 15388 df-clim 15405 df-rlim 15406 df-sum 15604 df-ef 15984 df-sin 15986 df-cos 15987 df-pi 15989 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-starv 17186 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-unif 17194 df-hom 17195 df-cco 17196 df-rest 17336 df-topn 17337 df-0g 17355 df-gsum 17356 df-topgen 17357 df-pt 17358 df-prds 17361 df-xrs 17416 df-qtop 17421 df-imas 17422 df-xps 17424 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-mulg 18991 df-cntz 19239 df-cmn 19704 df-psmet 21293 df-xmet 21294 df-met 21295 df-bl 21296 df-mopn 21297 df-fbas 21298 df-fg 21299 df-cnfld 21302 df-top 22819 df-topon 22836 df-topsp 22858 df-bases 22871 df-cld 22944 df-ntr 22945 df-cls 22946 df-nei 23023 df-lp 23061 df-perf 23062 df-cn 23152 df-cnp 23153 df-haus 23240 df-tx 23487 df-hmeo 23680 df-fil 23771 df-fm 23863 df-flim 23864 df-flf 23865 df-xms 24245 df-ms 24246 df-tms 24247 df-cncf 24808 df-limc 25804 df-dv 25805 df-log 26502 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |