MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem3 Structured version   Visualization version   GIF version

Theorem lgslem3 26447
Description: The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem3 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem lgslem3
StepHypRef Expression
1 zmulcl 12369 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
21ad2ant2r 744 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (𝐴 · 𝐵) ∈ ℤ)
3 zcn 12324 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4 zcn 12324 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
5 absmul 15006 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
63, 4, 5syl2an 596 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
76ad2ant2r 744 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
8 abscl 14990 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 absge0 14999 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
108, 9jca 512 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1211adantr 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13 1red 10976 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ)
14 abscl 14990 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
15 absge0 14999 . . . . . . . . . . 11 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
1614, 15jca 512 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
174, 16syl 17 . . . . . . . . 9 (𝐵 ∈ ℤ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
1817adantl 482 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
19 lemul12a 11833 . . . . . . . 8 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ 1 ∈ ℝ) ∧ (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ 1 ∈ ℝ)) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2012, 13, 18, 13, 19syl22anc 836 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2120imp 407 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
2221an4s 657 . . . . 5 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
23 1t1e1 12135 . . . . 5 (1 · 1) = 1
2422, 23breqtrdi 5115 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ 1)
257, 24eqbrtrd 5096 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) ≤ 1)
262, 25jca 512 . 2 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
27 fveq2 6774 . . . . 5 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
2827breq1d 5084 . . . 4 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐴) ≤ 1))
29 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
3028, 29elrab2 3627 . . 3 (𝐴𝑍 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1))
31 fveq2 6774 . . . . 5 (𝑥 = 𝐵 → (abs‘𝑥) = (abs‘𝐵))
3231breq1d 5084 . . . 4 (𝑥 = 𝐵 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐵) ≤ 1))
3332, 29elrab2 3627 . . 3 (𝐵𝑍 ↔ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1))
3430, 33anbi12i 627 . 2 ((𝐴𝑍𝐵𝑍) ↔ ((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)))
35 fveq2 6774 . . . 4 (𝑥 = (𝐴 · 𝐵) → (abs‘𝑥) = (abs‘(𝐴 · 𝐵)))
3635breq1d 5084 . . 3 (𝑥 = (𝐴 · 𝐵) → ((abs‘𝑥) ≤ 1 ↔ (abs‘(𝐴 · 𝐵)) ≤ 1))
3736, 29elrab2 3627 . 2 ((𝐴 · 𝐵) ∈ 𝑍 ↔ ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
3826, 34, 373imtr4i 292 1 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cz 12319  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  lgsfcl2  26451  lgscllem  26452  lgsdirprm  26479
  Copyright terms: Public domain W3C validator