Proof of Theorem lgslem3
| Step | Hyp | Ref
| Expression |
| 1 | | zmulcl 12650 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ) |
| 2 | 1 | ad2ant2r 747 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧
(abs‘𝐴) ≤ 1) ∧
(𝐵 ∈ ℤ ∧
(abs‘𝐵) ≤ 1))
→ (𝐴 · 𝐵) ∈
ℤ) |
| 3 | | zcn 12602 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
| 4 | | zcn 12602 |
. . . . . 6
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℂ) |
| 5 | | absmul 15316 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) →
(abs‘(𝐴 ·
𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
| 6 | 3, 4, 5 | syl2an 596 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
(abs‘(𝐴 ·
𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
| 7 | 6 | ad2ant2r 747 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧
(abs‘𝐴) ≤ 1) ∧
(𝐵 ∈ ℤ ∧
(abs‘𝐵) ≤ 1))
→ (abs‘(𝐴
· 𝐵)) =
((abs‘𝐴) ·
(abs‘𝐵))) |
| 8 | | abscl 15300 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(abs‘𝐴) ∈
ℝ) |
| 9 | | absge0 15309 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → 0 ≤
(abs‘𝐴)) |
| 10 | 8, 9 | jca 511 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) |
| 11 | 3, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ →
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) |
| 12 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
((abs‘𝐴) ∈
ℝ ∧ 0 ≤ (abs‘𝐴))) |
| 13 | | 1red 11245 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈
ℝ) |
| 14 | | abscl 15300 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℂ →
(abs‘𝐵) ∈
ℝ) |
| 15 | | absge0 15309 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℂ → 0 ≤
(abs‘𝐵)) |
| 16 | 14, 15 | jca 511 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℂ →
((abs‘𝐵) ∈
ℝ ∧ 0 ≤ (abs‘𝐵))) |
| 17 | 4, 16 | syl 17 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℤ →
((abs‘𝐵) ∈
ℝ ∧ 0 ≤ (abs‘𝐵))) |
| 18 | 17 | adantl 481 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
((abs‘𝐵) ∈
ℝ ∧ 0 ≤ (abs‘𝐵))) |
| 19 | | lemul12a 12108 |
. . . . . . . 8
⊢
(((((abs‘𝐴)
∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ 1 ∈ ℝ) ∧
(((abs‘𝐵) ∈
ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ 1 ∈ ℝ)) →
(((abs‘𝐴) ≤ 1
∧ (abs‘𝐵) ≤ 1)
→ ((abs‘𝐴)
· (abs‘𝐵))
≤ (1 · 1))) |
| 20 | 12, 13, 18, 13, 19 | syl22anc 838 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
(((abs‘𝐴) ≤ 1
∧ (abs‘𝐵) ≤ 1)
→ ((abs‘𝐴)
· (abs‘𝐵))
≤ (1 · 1))) |
| 21 | 20 | imp 406 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧
((abs‘𝐴) ≤ 1 ∧
(abs‘𝐵) ≤ 1))
→ ((abs‘𝐴)
· (abs‘𝐵))
≤ (1 · 1)) |
| 22 | 21 | an4s 660 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧
(abs‘𝐴) ≤ 1) ∧
(𝐵 ∈ ℤ ∧
(abs‘𝐵) ≤ 1))
→ ((abs‘𝐴)
· (abs‘𝐵))
≤ (1 · 1)) |
| 23 | | 1t1e1 12411 |
. . . . 5
⊢ (1
· 1) = 1 |
| 24 | 22, 23 | breqtrdi 5166 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧
(abs‘𝐴) ≤ 1) ∧
(𝐵 ∈ ℤ ∧
(abs‘𝐵) ≤ 1))
→ ((abs‘𝐴)
· (abs‘𝐵))
≤ 1) |
| 25 | 7, 24 | eqbrtrd 5147 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧
(abs‘𝐴) ≤ 1) ∧
(𝐵 ∈ ℤ ∧
(abs‘𝐵) ≤ 1))
→ (abs‘(𝐴
· 𝐵)) ≤
1) |
| 26 | 2, 25 | jca 511 |
. 2
⊢ (((𝐴 ∈ ℤ ∧
(abs‘𝐴) ≤ 1) ∧
(𝐵 ∈ ℤ ∧
(abs‘𝐵) ≤ 1))
→ ((𝐴 · 𝐵) ∈ ℤ ∧
(abs‘(𝐴 ·
𝐵)) ≤
1)) |
| 27 | | fveq2 6887 |
. . . . 5
⊢ (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴)) |
| 28 | 27 | breq1d 5135 |
. . . 4
⊢ (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐴) ≤ 1)) |
| 29 | | lgslem2.z |
. . . 4
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
| 30 | 28, 29 | elrab2 3679 |
. . 3
⊢ (𝐴 ∈ 𝑍 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1)) |
| 31 | | fveq2 6887 |
. . . . 5
⊢ (𝑥 = 𝐵 → (abs‘𝑥) = (abs‘𝐵)) |
| 32 | 31 | breq1d 5135 |
. . . 4
⊢ (𝑥 = 𝐵 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐵) ≤ 1)) |
| 33 | 32, 29 | elrab2 3679 |
. . 3
⊢ (𝐵 ∈ 𝑍 ↔ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) |
| 34 | 30, 33 | anbi12i 628 |
. 2
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑍) ↔ ((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧
(abs‘𝐵) ≤
1))) |
| 35 | | fveq2 6887 |
. . . 4
⊢ (𝑥 = (𝐴 · 𝐵) → (abs‘𝑥) = (abs‘(𝐴 · 𝐵))) |
| 36 | 35 | breq1d 5135 |
. . 3
⊢ (𝑥 = (𝐴 · 𝐵) → ((abs‘𝑥) ≤ 1 ↔ (abs‘(𝐴 · 𝐵)) ≤ 1)) |
| 37 | 36, 29 | elrab2 3679 |
. 2
⊢ ((𝐴 · 𝐵) ∈ 𝑍 ↔ ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1)) |
| 38 | 26, 34, 37 | 3imtr4i 292 |
1
⊢ ((𝐴 ∈ 𝑍 ∧ 𝐵 ∈ 𝑍) → (𝐴 · 𝐵) ∈ 𝑍) |