MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem3 Structured version   Visualization version   GIF version

Theorem lgslem3 27237
Description: The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem3 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem lgslem3
StepHypRef Expression
1 zmulcl 12521 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
21ad2ant2r 747 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (𝐴 · 𝐵) ∈ ℤ)
3 zcn 12473 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4 zcn 12473 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
5 absmul 15201 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
63, 4, 5syl2an 596 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
76ad2ant2r 747 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
8 abscl 15185 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 absge0 15194 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
108, 9jca 511 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13 1red 11113 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ)
14 abscl 15185 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
15 absge0 15194 . . . . . . . . . . 11 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
1614, 15jca 511 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
174, 16syl 17 . . . . . . . . 9 (𝐵 ∈ ℤ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
1817adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
19 lemul12a 11979 . . . . . . . 8 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ 1 ∈ ℝ) ∧ (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ 1 ∈ ℝ)) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2012, 13, 18, 13, 19syl22anc 838 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2120imp 406 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
2221an4s 660 . . . . 5 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
23 1t1e1 12282 . . . . 5 (1 · 1) = 1
2422, 23breqtrdi 5130 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ 1)
257, 24eqbrtrd 5111 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) ≤ 1)
262, 25jca 511 . 2 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
27 fveq2 6822 . . . . 5 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
2827breq1d 5099 . . . 4 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐴) ≤ 1))
29 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
3028, 29elrab2 3645 . . 3 (𝐴𝑍 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1))
31 fveq2 6822 . . . . 5 (𝑥 = 𝐵 → (abs‘𝑥) = (abs‘𝐵))
3231breq1d 5099 . . . 4 (𝑥 = 𝐵 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐵) ≤ 1))
3332, 29elrab2 3645 . . 3 (𝐵𝑍 ↔ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1))
3430, 33anbi12i 628 . 2 ((𝐴𝑍𝐵𝑍) ↔ ((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)))
35 fveq2 6822 . . . 4 (𝑥 = (𝐴 · 𝐵) → (abs‘𝑥) = (abs‘(𝐴 · 𝐵)))
3635breq1d 5099 . . 3 (𝑥 = (𝐴 · 𝐵) → ((abs‘𝑥) ≤ 1 ↔ (abs‘(𝐴 · 𝐵)) ≤ 1))
3736, 29elrab2 3645 . 2 ((𝐴 · 𝐵) ∈ 𝑍 ↔ ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
3826, 34, 373imtr4i 292 1 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  cle 11147  cz 12468  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  lgsfcl2  27241  lgscllem  27242  lgsdirprm  27269
  Copyright terms: Public domain W3C validator