MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem3 Structured version   Visualization version   GIF version

Theorem lgslem3 27361
Description: The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem3 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem lgslem3
StepHypRef Expression
1 zmulcl 12692 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
21ad2ant2r 746 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (𝐴 · 𝐵) ∈ ℤ)
3 zcn 12644 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4 zcn 12644 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
5 absmul 15343 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
63, 4, 5syl2an 595 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
76ad2ant2r 746 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
8 abscl 15327 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 absge0 15336 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
108, 9jca 511 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13 1red 11291 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ)
14 abscl 15327 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
15 absge0 15336 . . . . . . . . . . 11 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
1614, 15jca 511 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
174, 16syl 17 . . . . . . . . 9 (𝐵 ∈ ℤ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
1817adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
19 lemul12a 12152 . . . . . . . 8 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ 1 ∈ ℝ) ∧ (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ 1 ∈ ℝ)) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2012, 13, 18, 13, 19syl22anc 838 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2120imp 406 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
2221an4s 659 . . . . 5 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
23 1t1e1 12455 . . . . 5 (1 · 1) = 1
2422, 23breqtrdi 5207 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ 1)
257, 24eqbrtrd 5188 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) ≤ 1)
262, 25jca 511 . 2 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
27 fveq2 6920 . . . . 5 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
2827breq1d 5176 . . . 4 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐴) ≤ 1))
29 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
3028, 29elrab2 3711 . . 3 (𝐴𝑍 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1))
31 fveq2 6920 . . . . 5 (𝑥 = 𝐵 → (abs‘𝑥) = (abs‘𝐵))
3231breq1d 5176 . . . 4 (𝑥 = 𝐵 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐵) ≤ 1))
3332, 29elrab2 3711 . . 3 (𝐵𝑍 ↔ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1))
3430, 33anbi12i 627 . 2 ((𝐴𝑍𝐵𝑍) ↔ ((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)))
35 fveq2 6920 . . . 4 (𝑥 = (𝐴 · 𝐵) → (abs‘𝑥) = (abs‘(𝐴 · 𝐵)))
3635breq1d 5176 . . 3 (𝑥 = (𝐴 · 𝐵) → ((abs‘𝑥) ≤ 1 ↔ (abs‘(𝐴 · 𝐵)) ≤ 1))
3736, 29elrab2 3711 . 2 ((𝐴 · 𝐵) ∈ 𝑍 ↔ ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
3826, 34, 373imtr4i 292 1 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  cle 11325  cz 12639  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285
This theorem is referenced by:  lgsfcl2  27365  lgscllem  27366  lgsdirprm  27393
  Copyright terms: Public domain W3C validator