MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem3 Structured version   Visualization version   GIF version

Theorem lgslem3 27208
Description: The set 𝑍 of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem3 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem lgslem3
StepHypRef Expression
1 zmulcl 12524 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 · 𝐵) ∈ ℤ)
21ad2ant2r 747 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (𝐴 · 𝐵) ∈ ℤ)
3 zcn 12476 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4 zcn 12476 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
5 absmul 15201 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
63, 4, 5syl2an 596 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
76ad2ant2r 747 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
8 abscl 15185 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
9 absge0 15194 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
108, 9jca 511 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
13 1red 11116 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℝ)
14 abscl 15185 . . . . . . . . . . 11 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
15 absge0 15194 . . . . . . . . . . 11 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
1614, 15jca 511 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
174, 16syl 17 . . . . . . . . 9 (𝐵 ∈ ℤ → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
1817adantl 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)))
19 lemul12a 11982 . . . . . . . 8 (((((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ∧ 1 ∈ ℝ) ∧ (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ 1 ∈ ℝ)) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2012, 13, 18, 13, 19syl22anc 838 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1)))
2120imp 406 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ((abs‘𝐴) ≤ 1 ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
2221an4s 660 . . . . 5 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ (1 · 1))
23 1t1e1 12285 . . . . 5 (1 · 1) = 1
2422, 23breqtrdi 5133 . . . 4 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((abs‘𝐴) · (abs‘𝐵)) ≤ 1)
257, 24eqbrtrd 5114 . . 3 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → (abs‘(𝐴 · 𝐵)) ≤ 1)
262, 25jca 511 . 2 (((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)) → ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
27 fveq2 6822 . . . . 5 (𝑥 = 𝐴 → (abs‘𝑥) = (abs‘𝐴))
2827breq1d 5102 . . . 4 (𝑥 = 𝐴 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐴) ≤ 1))
29 lgslem2.z . . . 4 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
3028, 29elrab2 3651 . . 3 (𝐴𝑍 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1))
31 fveq2 6822 . . . . 5 (𝑥 = 𝐵 → (abs‘𝑥) = (abs‘𝐵))
3231breq1d 5102 . . . 4 (𝑥 = 𝐵 → ((abs‘𝑥) ≤ 1 ↔ (abs‘𝐵) ≤ 1))
3332, 29elrab2 3651 . . 3 (𝐵𝑍 ↔ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1))
3430, 33anbi12i 628 . 2 ((𝐴𝑍𝐵𝑍) ↔ ((𝐴 ∈ ℤ ∧ (abs‘𝐴) ≤ 1) ∧ (𝐵 ∈ ℤ ∧ (abs‘𝐵) ≤ 1)))
35 fveq2 6822 . . . 4 (𝑥 = (𝐴 · 𝐵) → (abs‘𝑥) = (abs‘(𝐴 · 𝐵)))
3635breq1d 5102 . . 3 (𝑥 = (𝐴 · 𝐵) → ((abs‘𝑥) ≤ 1 ↔ (abs‘(𝐴 · 𝐵)) ≤ 1))
3736, 29elrab2 3651 . 2 ((𝐴 · 𝐵) ∈ 𝑍 ↔ ((𝐴 · 𝐵) ∈ ℤ ∧ (abs‘(𝐴 · 𝐵)) ≤ 1))
3826, 34, 373imtr4i 292 1 ((𝐴𝑍𝐵𝑍) → (𝐴 · 𝐵) ∈ 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3394   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  cle 11150  cz 12471  abscabs 15141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by:  lgsfcl2  27212  lgscllem  27213  lgsdirprm  27240
  Copyright terms: Public domain W3C validator