MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2expltfac Structured version   Visualization version   GIF version

Theorem 2expltfac 16609
Description: The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))

Proof of Theorem 2expltfac
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7199 . . . 4 (𝑥 = 4 → (2↑𝑥) = (2↑4))
2 2exp4 16601 . . . 4 (2↑4) = 16
31, 2eqtrdi 2787 . . 3 (𝑥 = 4 → (2↑𝑥) = 16)
4 fveq2 6695 . . . 4 (𝑥 = 4 → (!‘𝑥) = (!‘4))
5 fac4 13812 . . . 4 (!‘4) = 24
64, 5eqtrdi 2787 . . 3 (𝑥 = 4 → (!‘𝑥) = 24)
73, 6breq12d 5052 . 2 (𝑥 = 4 → ((2↑𝑥) < (!‘𝑥) ↔ 16 < 24))
8 oveq2 7199 . . 3 (𝑥 = 𝑛 → (2↑𝑥) = (2↑𝑛))
9 fveq2 6695 . . 3 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
108, 9breq12d 5052 . 2 (𝑥 = 𝑛 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑛) < (!‘𝑛)))
11 oveq2 7199 . . 3 (𝑥 = (𝑛 + 1) → (2↑𝑥) = (2↑(𝑛 + 1)))
12 fveq2 6695 . . 3 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
1311, 12breq12d 5052 . 2 (𝑥 = (𝑛 + 1) → ((2↑𝑥) < (!‘𝑥) ↔ (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
14 oveq2 7199 . . 3 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
15 fveq2 6695 . . 3 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1614, 15breq12d 5052 . 2 (𝑥 = 𝑁 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑁) < (!‘𝑁)))
17 1nn0 12071 . . 3 1 ∈ ℕ0
18 2nn0 12072 . . 3 2 ∈ ℕ0
19 6nn0 12076 . . 3 6 ∈ ℕ0
20 4nn0 12074 . . 3 4 ∈ ℕ0
21 6lt10 12392 . . 3 6 < 10
22 1lt2 11966 . . 3 1 < 2
2317, 18, 19, 20, 21, 22decltc 12287 . 2 16 < 24
24 2nn 11868 . . . . . . . . 9 2 ∈ ℕ
2524a1i 11 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℕ)
26 4nn 11878 . . . . . . . . . 10 4 ∈ ℕ
27 simpl 486 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ (ℤ‘4))
28 eluznn 12479 . . . . . . . . . 10 ((4 ∈ ℕ ∧ 𝑛 ∈ (ℤ‘4)) → 𝑛 ∈ ℕ)
2926, 27, 28sylancr 590 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ)
3029nnnn0d 12115 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ0)
3125, 30nnexpcld 13777 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℕ)
3231nnred 11810 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℝ)
33 2re 11869 . . . . . . 7 2 ∈ ℝ
3433a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ)
3532, 34remulcld 10828 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) ∈ ℝ)
3630faccld 13815 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ)
3736nnred 11810 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℝ)
3837, 34remulcld 10828 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ∈ ℝ)
3929nnred 11810 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℝ)
40 1red 10799 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ∈ ℝ)
4139, 40readdcld 10827 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (𝑛 + 1) ∈ ℝ)
4237, 41remulcld 10828 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · (𝑛 + 1)) ∈ ℝ)
43 2rp 12556 . . . . . . 7 2 ∈ ℝ+
4443a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ+)
45 simpr 488 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) < (!‘𝑛))
4632, 37, 44, 45ltmul1dd 12648 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · 2))
4736nnnn0d 12115 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ0)
4847nn0ge0d 12118 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 0 ≤ (!‘𝑛))
49 df-2 11858 . . . . . . 7 2 = (1 + 1)
5029nnge1d 11843 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ≤ 𝑛)
5140, 39, 40, 50leadd1dd 11411 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (1 + 1) ≤ (𝑛 + 1))
5249, 51eqbrtrid 5074 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ≤ (𝑛 + 1))
5334, 41, 37, 48, 52lemul2ad 11737 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ≤ ((!‘𝑛) · (𝑛 + 1)))
5435, 38, 42, 46, 53ltletrd 10957 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · (𝑛 + 1)))
55 2cnd 11873 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℂ)
5655, 30expp1d 13682 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) = ((2↑𝑛) · 2))
57 facp1 13809 . . . . 5 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5830, 57syl 17 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5954, 56, 583brtr4d 5071 . . 3 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1)))
6059ex 416 . 2 (𝑛 ∈ (ℤ‘4) → ((2↑𝑛) < (!‘𝑛) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
617, 10, 13, 16, 23, 60uzind4i 12471 1 (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112   class class class wbr 5039  cfv 6358  (class class class)co 7191  cr 10693  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cn 11795  2c2 11850  4c4 11852  6c6 11854  0cn0 12055  cdc 12258  cuz 12403  +crp 12551  cexp 13600  !cfa 13804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-fac 13805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator