MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2expltfac Structured version   Visualization version   GIF version

Theorem 2expltfac 17070
Description: The factorial grows faster than two to the power 𝑁. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))

Proof of Theorem 2expltfac
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . 4 (𝑥 = 4 → (2↑𝑥) = (2↑4))
2 2exp4 17062 . . . 4 (2↑4) = 16
31, 2eqtrdi 2781 . . 3 (𝑥 = 4 → (2↑𝑥) = 16)
4 fveq2 6861 . . . 4 (𝑥 = 4 → (!‘𝑥) = (!‘4))
5 fac4 14253 . . . 4 (!‘4) = 24
64, 5eqtrdi 2781 . . 3 (𝑥 = 4 → (!‘𝑥) = 24)
73, 6breq12d 5123 . 2 (𝑥 = 4 → ((2↑𝑥) < (!‘𝑥) ↔ 16 < 24))
8 oveq2 7398 . . 3 (𝑥 = 𝑛 → (2↑𝑥) = (2↑𝑛))
9 fveq2 6861 . . 3 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
108, 9breq12d 5123 . 2 (𝑥 = 𝑛 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑛) < (!‘𝑛)))
11 oveq2 7398 . . 3 (𝑥 = (𝑛 + 1) → (2↑𝑥) = (2↑(𝑛 + 1)))
12 fveq2 6861 . . 3 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
1311, 12breq12d 5123 . 2 (𝑥 = (𝑛 + 1) → ((2↑𝑥) < (!‘𝑥) ↔ (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
14 oveq2 7398 . . 3 (𝑥 = 𝑁 → (2↑𝑥) = (2↑𝑁))
15 fveq2 6861 . . 3 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
1614, 15breq12d 5123 . 2 (𝑥 = 𝑁 → ((2↑𝑥) < (!‘𝑥) ↔ (2↑𝑁) < (!‘𝑁)))
17 1nn0 12465 . . 3 1 ∈ ℕ0
18 2nn0 12466 . . 3 2 ∈ ℕ0
19 6nn0 12470 . . 3 6 ∈ ℕ0
20 4nn0 12468 . . 3 4 ∈ ℕ0
21 6lt10 12790 . . 3 6 < 10
22 1lt2 12359 . . 3 1 < 2
2317, 18, 19, 20, 21, 22decltc 12685 . 2 16 < 24
24 2nn 12266 . . . . . . . . 9 2 ∈ ℕ
2524a1i 11 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℕ)
26 4nn 12276 . . . . . . . . . 10 4 ∈ ℕ
27 simpl 482 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ (ℤ‘4))
28 eluznn 12884 . . . . . . . . . 10 ((4 ∈ ℕ ∧ 𝑛 ∈ (ℤ‘4)) → 𝑛 ∈ ℕ)
2926, 27, 28sylancr 587 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ)
3029nnnn0d 12510 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℕ0)
3125, 30nnexpcld 14217 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℕ)
3231nnred 12208 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) ∈ ℝ)
33 2re 12267 . . . . . . 7 2 ∈ ℝ
3433a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ)
3532, 34remulcld 11211 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) ∈ ℝ)
3630faccld 14256 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ)
3736nnred 12208 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℝ)
3837, 34remulcld 11211 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ∈ ℝ)
3929nnred 12208 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 𝑛 ∈ ℝ)
40 1red 11182 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ∈ ℝ)
4139, 40readdcld 11210 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (𝑛 + 1) ∈ ℝ)
4237, 41remulcld 11211 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · (𝑛 + 1)) ∈ ℝ)
43 2rp 12963 . . . . . . 7 2 ∈ ℝ+
4443a1i 11 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℝ+)
45 simpr 484 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑𝑛) < (!‘𝑛))
4632, 37, 44, 45ltmul1dd 13057 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · 2))
4736nnnn0d 12510 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘𝑛) ∈ ℕ0)
4847nn0ge0d 12513 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 0 ≤ (!‘𝑛))
49 df-2 12256 . . . . . . 7 2 = (1 + 1)
5029nnge1d 12241 . . . . . . . 8 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 1 ≤ 𝑛)
5140, 39, 40, 50leadd1dd 11799 . . . . . . 7 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (1 + 1) ≤ (𝑛 + 1))
5249, 51eqbrtrid 5145 . . . . . 6 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ≤ (𝑛 + 1))
5334, 41, 37, 48, 52lemul2ad 12130 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((!‘𝑛) · 2) ≤ ((!‘𝑛) · (𝑛 + 1)))
5435, 38, 42, 46, 53ltletrd 11341 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → ((2↑𝑛) · 2) < ((!‘𝑛) · (𝑛 + 1)))
55 2cnd 12271 . . . . 5 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → 2 ∈ ℂ)
5655, 30expp1d 14119 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) = ((2↑𝑛) · 2))
57 facp1 14250 . . . . 5 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5830, 57syl 17 . . . 4 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
5954, 56, 583brtr4d 5142 . . 3 ((𝑛 ∈ (ℤ‘4) ∧ (2↑𝑛) < (!‘𝑛)) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1)))
6059ex 412 . 2 (𝑛 ∈ (ℤ‘4) → ((2↑𝑛) < (!‘𝑛) → (2↑(𝑛 + 1)) < (!‘(𝑛 + 1))))
617, 10, 13, 16, 23, 60uzind4i 12876 1 (𝑁 ∈ (ℤ‘4) → (2↑𝑁) < (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cn 12193  2c2 12248  4c4 12250  6c6 12252  0cn0 12449  cdc 12656  cuz 12800  +crp 12958  cexp 14033  !cfa 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-fac 14246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator