| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | matassa.a | . . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 2 |  | eqid 2736 | . . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 3 | 1, 2 | matbas2 22428 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((Base‘𝑅)
↑m (𝑁
× 𝑁)) =
(Base‘𝐴)) | 
| 4 |  | eqidd 2737 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(+g‘𝐴) =
(+g‘𝐴)) | 
| 5 |  | eqid 2736 | . . 3
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | 
| 6 | 1, 5 | matmulr 22445 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) | 
| 7 | 1 | matgrp 22437 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp) | 
| 8 |  | simp1r 1198 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring) | 
| 9 |  | simp1l 1197 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin) | 
| 10 |  | simp2 1137 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 11 |  | simp3 1138 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 12 | 2, 8, 5, 9, 9, 9, 10, 11 | mamucl 22406 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 13 |  | simplr 768 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑅 ∈ Ring) | 
| 14 |  | simpll 766 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑁 ∈ Fin) | 
| 15 |  | simpr1 1194 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 16 |  | simpr2 1195 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 17 |  | simpr3 1196 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 18 | 2, 13, 14, 14, 14, 14, 15, 16, 17, 5, 5, 5,
5 | mamuass 22407 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 19 |  | eqid 2736 | . . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 20 | 2, 13, 5, 14, 14, 14, 19, 15, 16, 17 | mamudir 22409 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦 ∘f
(+g‘𝑅)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∘f
(+g‘𝑅)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 21 | 3 | adantr 480 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) | 
| 22 | 16, 21 | eleqtrd 2842 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴)) | 
| 23 | 17, 21 | eleqtrd 2842 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴)) | 
| 24 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝐴) =
(Base‘𝐴) | 
| 25 |  | eqid 2736 | . . . . . 6
⊢
(+g‘𝐴) = (+g‘𝐴) | 
| 26 | 1, 24, 25, 19 | matplusg2 22434 | . . . . 5
⊢ ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘f
(+g‘𝑅)𝑧)) | 
| 27 | 22, 23, 26 | syl2anc 584 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘f
(+g‘𝑅)𝑧)) | 
| 28 | 27 | oveq2d 7448 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦(+g‘𝐴)𝑧)) = (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦 ∘f
(+g‘𝑅)𝑧))) | 
| 29 | 2, 13, 5, 14, 14, 14, 15, 16 | mamucl 22406 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 30 | 29, 21 | eleqtrd 2842 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ (Base‘𝐴)) | 
| 31 | 2, 13, 5, 14, 14, 14, 15, 17 | mamucl 22406 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 32 | 31, 21 | eleqtrd 2842 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) | 
| 33 | 1, 24, 25, 19 | matplusg2 22434 | . . . 4
⊢ (((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ (Base‘𝐴) ∧ (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(+g‘𝐴)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∘f
(+g‘𝑅)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 34 | 30, 32, 33 | syl2anc 584 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(+g‘𝐴)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∘f
(+g‘𝑅)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 35 | 20, 28, 34 | 3eqtr4d 2786 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦(+g‘𝐴)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(+g‘𝐴)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 36 | 2, 13, 5, 14, 14, 14, 19, 15, 16, 17 | mamudi 22408 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥 ∘f
(+g‘𝑅)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∘f
(+g‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 37 | 15, 21 | eleqtrd 2842 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝐴)) | 
| 38 | 1, 24, 25, 19 | matplusg2 22434 | . . . . 5
⊢ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) | 
| 39 | 37, 22, 38 | syl2anc 584 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) | 
| 40 | 39 | oveq1d 7447 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g‘𝐴)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = ((𝑥 ∘f
(+g‘𝑅)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) | 
| 41 | 2, 13, 5, 14, 14, 14, 16, 17 | mamucl 22406 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 42 | 41, 21 | eleqtrd 2842 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) | 
| 43 | 1, 24, 25, 19 | matplusg2 22434 | . . . 4
⊢ (((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴) ∧ (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)(+g‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∘f
(+g‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 44 | 32, 42, 43 | syl2anc 584 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)(+g‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∘f
(+g‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 45 | 36, 40, 44 | 3eqtr4d 2786 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g‘𝐴)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)(+g‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) | 
| 46 |  | simpr 484 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | 
| 47 |  | eqid 2736 | . . 3
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 48 |  | eqid 2736 | . . 3
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 49 |  | eqid 2736 | . . 3
⊢ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅))) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅))) | 
| 50 |  | simpl 482 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) | 
| 51 | 2, 46, 47, 48, 49, 50 | mamumat1cl 22446 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 52 |  | simplr 768 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring) | 
| 53 |  | simpll 766 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin) | 
| 54 |  | simpr 484 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) | 
| 55 | 2, 52, 47, 48, 49, 53, 53, 5, 54 | mamulid 22448 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅)))(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑥) = 𝑥) | 
| 56 | 2, 52, 47, 48, 49, 53, 53, 5, 54 | mamurid 22449 | . 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅)))) = 𝑥) | 
| 57 | 3, 4, 6, 7, 12, 18, 35, 45, 51, 55, 56 | isringd 20289 | 1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |