MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matring Structured version   Visualization version   GIF version

Theorem matring 22346
Description: Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
matassa.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
matring ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)

Proof of Theorem matring
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matassa.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2matbas2 22324 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
4 eqidd 2730 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝐴) = (+g𝐴))
5 eqid 2729 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
61, 5matmulr 22341 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
71matgrp 22333 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
8 simp1r 1199 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
9 simp1l 1198 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
10 simp2 1137 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
11 simp3 1138 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
122, 8, 5, 9, 9, 9, 10, 11mamucl 22304 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑅 ∈ Ring)
14 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑁 ∈ Fin)
15 simpr1 1195 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
16 simpr2 1196 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
17 simpr3 1197 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
182, 13, 14, 14, 14, 14, 15, 16, 17, 5, 5, 5, 5mamuass 22305 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
19 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
202, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudir 22307 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
213adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2216, 21eleqtrd 2830 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴))
2317, 21eleqtrd 2830 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴))
24 eqid 2729 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
25 eqid 2729 . . . . . 6 (+g𝐴) = (+g𝐴)
261, 24, 25, 19matplusg2 22330 . . . . 5 ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2722, 23, 26syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2827oveq2d 7369 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)))
292, 13, 5, 14, 14, 14, 15, 16mamucl 22304 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3029, 21eleqtrd 2830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴))
312, 13, 5, 14, 14, 14, 15, 17mamucl 22304 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3231, 21eleqtrd 2830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
331, 24, 25, 19matplusg2 22330 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴) ∧ (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3430, 32, 33syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3520, 28, 343eqtr4d 2774 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
362, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudi 22306 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3715, 21eleqtrd 2830 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝐴))
381, 24, 25, 19matplusg2 22330 . . . . 5 ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
3937, 22, 38syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
4039oveq1d 7368 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧))
412, 13, 5, 14, 14, 14, 16, 17mamucl 22304 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
4241, 21eleqtrd 2830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
431, 24, 25, 19matplusg2 22330 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴) ∧ (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4432, 42, 43syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4536, 40, 443eqtr4d 2774 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
46 simpr 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
47 eqid 2729 . . 3 (1r𝑅) = (1r𝑅)
48 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
49 eqid 2729 . . 3 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))
50 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
512, 46, 47, 48, 49, 50mamumat1cl 22342 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
52 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
53 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
54 simpr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
552, 52, 47, 48, 49, 53, 53, 5, 54mamulid 22344 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
562, 52, 47, 48, 49, 53, 53, 5, 54mamurid 22345 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))) = 𝑥)
573, 4, 6, 7, 12, 18, 35, 45, 51, 55, 56isringd 20194 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4478  cotp 4587   × cxp 5621  cfv 6486  (class class class)co 7353  cmpo 7355  f cof 7615  m cmap 8760  Fincfn 8879  Basecbs 17138  +gcplusg 17179  0gc0g 17361  1rcur 20084  Ringcrg 20136   maMul cmmul 22293   Mat cmat 22310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-mamu 22294  df-mat 22311
This theorem is referenced by:  matassa  22347  mat1  22350  mat1bas  22352  matsc  22353  mat0dim0  22370  mat0dimid  22371  mat0dimcrng  22373  mat1dimcrng  22380  mat1ghm  22386  mat1mhm  22387  mat1rhm  22388  dmatid  22398  dmatsgrp  22402  dmatsrng  22404  scmatscmide  22410  scmatscmiddistr  22411  scmatmats  22414  scmatscm  22416  scmatid  22417  scmataddcl  22419  scmatsubcl  22420  scmatmulcl  22421  scmatsgrp  22422  scmatsrng  22423  smatvscl  22427  scmatrhmcl  22431  scmatf1  22434  scmatmhm  22437  mdet1  22504  mdetunilem8  22522  mdetuni0  22524  mdetmul  22526  madulid  22548  matunit  22581  slesolinv  22583  slesolinvbi  22584  slesolex  22585  pmatring  22595  mat2pmatghm  22633  mat2pmatmul  22634  mat2pmat1  22635  mat2pmatmhm  22636  mat2pmatrhm  22637  m2cpmrhm  22649  m2pmfzgsumcl  22651  m2cpminv0  22664  decpmataa0  22671  decpmatmul  22675  monmatcollpw  22682  pmatcollpw3fi1lem1  22689  pmatcollpw3fi1lem2  22690  pm2mpf1lem  22697  pm2mpcl  22700  pm2mpf1  22702  pm2mpcoe1  22703  idpm2idmp  22704  mp2pm2mplem5  22713  mp2pm2mp  22714  pm2mpghmlem2  22715  pm2mpghmlem1  22716  pm2mpghm  22719  pm2mpmhmlem1  22721  pm2mpmhmlem2  22722  pm2mpmhm  22723  pm2mprhm  22724  monmat2matmon  22727  pm2mp  22728  chpmat0d  22737  chpmat1dlem  22738  chpmat1d  22739  chp0mat  22749  chpidmat  22750  cpmidgsumm2pm  22772  cpmidpmatlem2  22774  cpmidpmatlem3  22775  cpmadugsumlemB  22777  cpmadugsumlemC  22778  cayhamlem2  22787  chcoeffeqlem  22788  cayhamlem4  22791  matunitlindflem2  37599  matunitlindf  37600
  Copyright terms: Public domain W3C validator