MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matring Structured version   Visualization version   GIF version

Theorem matring 22386
Description: Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
matassa.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
matring ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)

Proof of Theorem matring
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matassa.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2matbas2 22364 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
4 eqidd 2737 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝐴) = (+g𝐴))
5 eqid 2736 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
61, 5matmulr 22381 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
71matgrp 22373 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
8 simp1r 1199 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
9 simp1l 1198 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
10 simp2 1137 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
11 simp3 1138 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
122, 8, 5, 9, 9, 9, 10, 11mamucl 22344 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑅 ∈ Ring)
14 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑁 ∈ Fin)
15 simpr1 1195 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
16 simpr2 1196 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
17 simpr3 1197 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
182, 13, 14, 14, 14, 14, 15, 16, 17, 5, 5, 5, 5mamuass 22345 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
19 eqid 2736 . . . 4 (+g𝑅) = (+g𝑅)
202, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudir 22347 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
213adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2216, 21eleqtrd 2837 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴))
2317, 21eleqtrd 2837 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴))
24 eqid 2736 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
25 eqid 2736 . . . . . 6 (+g𝐴) = (+g𝐴)
261, 24, 25, 19matplusg2 22370 . . . . 5 ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2722, 23, 26syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2827oveq2d 7426 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)))
292, 13, 5, 14, 14, 14, 15, 16mamucl 22344 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3029, 21eleqtrd 2837 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴))
312, 13, 5, 14, 14, 14, 15, 17mamucl 22344 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3231, 21eleqtrd 2837 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
331, 24, 25, 19matplusg2 22370 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴) ∧ (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3430, 32, 33syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3520, 28, 343eqtr4d 2781 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
362, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudi 22346 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3715, 21eleqtrd 2837 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝐴))
381, 24, 25, 19matplusg2 22370 . . . . 5 ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
3937, 22, 38syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
4039oveq1d 7425 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧))
412, 13, 5, 14, 14, 14, 16, 17mamucl 22344 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
4241, 21eleqtrd 2837 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
431, 24, 25, 19matplusg2 22370 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴) ∧ (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4432, 42, 43syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4536, 40, 443eqtr4d 2781 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
46 simpr 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
47 eqid 2736 . . 3 (1r𝑅) = (1r𝑅)
48 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
49 eqid 2736 . . 3 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))
50 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
512, 46, 47, 48, 49, 50mamumat1cl 22382 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
52 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
53 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
54 simpr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
552, 52, 47, 48, 49, 53, 53, 5, 54mamulid 22384 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
562, 52, 47, 48, 49, 53, 53, 5, 54mamurid 22385 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))) = 𝑥)
573, 4, 6, 7, 12, 18, 35, 45, 51, 55, 56isringd 20256 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4505  cotp 4614   × cxp 5657  cfv 6536  (class class class)co 7410  cmpo 7412  f cof 7674  m cmap 8845  Fincfn 8964  Basecbs 17233  +gcplusg 17276  0gc0g 17458  1rcur 20146  Ringcrg 20198   maMul cmmul 22333   Mat cmat 22350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-mamu 22334  df-mat 22351
This theorem is referenced by:  matassa  22387  mat1  22390  mat1bas  22392  matsc  22393  mat0dim0  22410  mat0dimid  22411  mat0dimcrng  22413  mat1dimcrng  22420  mat1ghm  22426  mat1mhm  22427  mat1rhm  22428  dmatid  22438  dmatsgrp  22442  dmatsrng  22444  scmatscmide  22450  scmatscmiddistr  22451  scmatmats  22454  scmatscm  22456  scmatid  22457  scmataddcl  22459  scmatsubcl  22460  scmatmulcl  22461  scmatsgrp  22462  scmatsrng  22463  smatvscl  22467  scmatrhmcl  22471  scmatf1  22474  scmatmhm  22477  mdet1  22544  mdetunilem8  22562  mdetuni0  22564  mdetmul  22566  madulid  22588  matunit  22621  slesolinv  22623  slesolinvbi  22624  slesolex  22625  pmatring  22635  mat2pmatghm  22673  mat2pmatmul  22674  mat2pmat1  22675  mat2pmatmhm  22676  mat2pmatrhm  22677  m2cpmrhm  22689  m2pmfzgsumcl  22691  m2cpminv0  22704  decpmataa0  22711  decpmatmul  22715  monmatcollpw  22722  pmatcollpw3fi1lem1  22729  pmatcollpw3fi1lem2  22730  pm2mpf1lem  22737  pm2mpcl  22740  pm2mpf1  22742  pm2mpcoe1  22743  idpm2idmp  22744  mp2pm2mplem5  22753  mp2pm2mp  22754  pm2mpghmlem2  22755  pm2mpghmlem1  22756  pm2mpghm  22759  pm2mpmhmlem1  22761  pm2mpmhmlem2  22762  pm2mpmhm  22763  pm2mprhm  22764  monmat2matmon  22767  pm2mp  22768  chpmat0d  22777  chpmat1dlem  22778  chpmat1d  22779  chp0mat  22789  chpidmat  22790  cpmidgsumm2pm  22812  cpmidpmatlem2  22814  cpmidpmatlem3  22815  cpmadugsumlemB  22817  cpmadugsumlemC  22818  cayhamlem2  22827  chcoeffeqlem  22828  cayhamlem4  22831  matunitlindflem2  37646  matunitlindf  37647
  Copyright terms: Public domain W3C validator