Step | Hyp | Ref
| Expression |
1 | | matassa.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | 1, 2 | matbas2 21478 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((Base‘𝑅)
↑m (𝑁
× 𝑁)) =
(Base‘𝐴)) |
4 | | eqidd 2739 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(+g‘𝐴) =
(+g‘𝐴)) |
5 | | eqid 2738 |
. . 3
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
6 | 1, 5 | matmulr 21495 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
7 | 1 | matgrp 21487 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp) |
8 | | simp1r 1196 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring) |
9 | | simp1l 1195 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin) |
10 | | simp2 1135 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
11 | | simp3 1136 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
12 | 2, 8, 5, 9, 9, 9, 10, 11 | mamucl 21458 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
13 | | simplr 765 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑅 ∈ Ring) |
14 | | simpll 763 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑁 ∈ Fin) |
15 | | simpr1 1192 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
16 | | simpr2 1193 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
17 | | simpr3 1194 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
18 | 2, 13, 14, 14, 14, 14, 15, 16, 17, 5, 5, 5,
5 | mamuass 21459 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
19 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
20 | 2, 13, 5, 14, 14, 14, 19, 15, 16, 17 | mamudir 21461 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦 ∘f
(+g‘𝑅)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∘f
(+g‘𝑅)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
21 | 3 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
22 | 16, 21 | eleqtrd 2841 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴)) |
23 | 17, 21 | eleqtrd 2841 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴)) |
24 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐴) =
(Base‘𝐴) |
25 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝐴) = (+g‘𝐴) |
26 | 1, 24, 25, 19 | matplusg2 21484 |
. . . . 5
⊢ ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘f
(+g‘𝑅)𝑧)) |
27 | 22, 23, 26 | syl2anc 583 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘f
(+g‘𝑅)𝑧)) |
28 | 27 | oveq2d 7271 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦(+g‘𝐴)𝑧)) = (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦 ∘f
(+g‘𝑅)𝑧))) |
29 | 2, 13, 5, 14, 14, 14, 15, 16 | mamucl 21458 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
30 | 29, 21 | eleqtrd 2841 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ (Base‘𝐴)) |
31 | 2, 13, 5, 14, 14, 14, 15, 17 | mamucl 21458 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
32 | 31, 21 | eleqtrd 2841 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) |
33 | 1, 24, 25, 19 | matplusg2 21484 |
. . . 4
⊢ (((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∈ (Base‘𝐴) ∧ (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(+g‘𝐴)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∘f
(+g‘𝑅)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
34 | 30, 32, 33 | syl2anc 583 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(+g‘𝐴)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦) ∘f
(+g‘𝑅)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
35 | 20, 28, 34 | 3eqtr4d 2788 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑦(+g‘𝐴)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑦)(+g‘𝐴)(𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
36 | 2, 13, 5, 14, 14, 14, 19, 15, 16, 17 | mamudi 21460 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥 ∘f
(+g‘𝑅)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∘f
(+g‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
37 | 15, 21 | eleqtrd 2841 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝐴)) |
38 | 1, 24, 25, 19 | matplusg2 21484 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
39 | 37, 22, 38 | syl2anc 583 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘f
(+g‘𝑅)𝑦)) |
40 | 39 | oveq1d 7270 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g‘𝐴)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = ((𝑥 ∘f
(+g‘𝑅)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) |
41 | 2, 13, 5, 14, 14, 14, 16, 17 | mamucl 21458 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
42 | 41, 21 | eleqtrd 2841 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) |
43 | 1, 24, 25, 19 | matplusg2 21484 |
. . . 4
⊢ (((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴) ∧ (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)(+g‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∘f
(+g‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
44 | 32, 42, 43 | syl2anc 583 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)(+g‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∘f
(+g‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
45 | 36, 40, 44 | 3eqtr4d 2788 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g‘𝐴)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = ((𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)(+g‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
46 | | simpr 484 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) |
47 | | eqid 2738 |
. . 3
⊢
(1r‘𝑅) = (1r‘𝑅) |
48 | | eqid 2738 |
. . 3
⊢
(0g‘𝑅) = (0g‘𝑅) |
49 | | eqid 2738 |
. . 3
⊢ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅))) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅))) |
50 | | simpl 482 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) |
51 | 2, 46, 47, 48, 49, 50 | mamumat1cl 21496 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅))) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
52 | | simplr 765 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring) |
53 | | simpll 763 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin) |
54 | | simpr 484 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
55 | 2, 52, 47, 48, 49, 53, 53, 5, 54 | mamulid 21498 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → ((𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅)))(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑥) = 𝑥) |
56 | 2, 52, 47, 48, 49, 53, 53, 5, 54 | mamurid 21499 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝑏, (1r‘𝑅), (0g‘𝑅)))) = 𝑥) |
57 | 3, 4, 6, 7, 12, 18, 35, 45, 51, 55, 56 | isringd 19739 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |