MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matring Structured version   Visualization version   GIF version

Theorem matring 22330
Description: Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
matassa.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
matring ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)

Proof of Theorem matring
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matassa.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2matbas2 22308 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
4 eqidd 2730 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝐴) = (+g𝐴))
5 eqid 2729 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
61, 5matmulr 22325 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
71matgrp 22317 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
8 simp1r 1199 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
9 simp1l 1198 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
10 simp2 1137 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
11 simp3 1138 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
122, 8, 5, 9, 9, 9, 10, 11mamucl 22288 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑅 ∈ Ring)
14 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑁 ∈ Fin)
15 simpr1 1195 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
16 simpr2 1196 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
17 simpr3 1197 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
182, 13, 14, 14, 14, 14, 15, 16, 17, 5, 5, 5, 5mamuass 22289 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
19 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
202, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudir 22291 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
213adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2216, 21eleqtrd 2830 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴))
2317, 21eleqtrd 2830 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴))
24 eqid 2729 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
25 eqid 2729 . . . . . 6 (+g𝐴) = (+g𝐴)
261, 24, 25, 19matplusg2 22314 . . . . 5 ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2722, 23, 26syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2827oveq2d 7403 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)))
292, 13, 5, 14, 14, 14, 15, 16mamucl 22288 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3029, 21eleqtrd 2830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴))
312, 13, 5, 14, 14, 14, 15, 17mamucl 22288 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3231, 21eleqtrd 2830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
331, 24, 25, 19matplusg2 22314 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴) ∧ (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3430, 32, 33syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3520, 28, 343eqtr4d 2774 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
362, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudi 22290 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3715, 21eleqtrd 2830 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝐴))
381, 24, 25, 19matplusg2 22314 . . . . 5 ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
3937, 22, 38syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
4039oveq1d 7402 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧))
412, 13, 5, 14, 14, 14, 16, 17mamucl 22288 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
4241, 21eleqtrd 2830 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
431, 24, 25, 19matplusg2 22314 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴) ∧ (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4432, 42, 43syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4536, 40, 443eqtr4d 2774 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
46 simpr 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
47 eqid 2729 . . 3 (1r𝑅) = (1r𝑅)
48 eqid 2729 . . 3 (0g𝑅) = (0g𝑅)
49 eqid 2729 . . 3 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))
50 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
512, 46, 47, 48, 49, 50mamumat1cl 22326 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
52 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
53 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
54 simpr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
552, 52, 47, 48, 49, 53, 53, 5, 54mamulid 22328 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
562, 52, 47, 48, 49, 53, 53, 5, 54mamurid 22329 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))) = 𝑥)
573, 4, 6, 7, 12, 18, 35, 45, 51, 55, 56isringd 20200 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4488  cotp 4597   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651  m cmap 8799  Fincfn 8918  Basecbs 17179  +gcplusg 17220  0gc0g 17402  1rcur 20090  Ringcrg 20142   maMul cmmul 22277   Mat cmat 22294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-mamu 22278  df-mat 22295
This theorem is referenced by:  matassa  22331  mat1  22334  mat1bas  22336  matsc  22337  mat0dim0  22354  mat0dimid  22355  mat0dimcrng  22357  mat1dimcrng  22364  mat1ghm  22370  mat1mhm  22371  mat1rhm  22372  dmatid  22382  dmatsgrp  22386  dmatsrng  22388  scmatscmide  22394  scmatscmiddistr  22395  scmatmats  22398  scmatscm  22400  scmatid  22401  scmataddcl  22403  scmatsubcl  22404  scmatmulcl  22405  scmatsgrp  22406  scmatsrng  22407  smatvscl  22411  scmatrhmcl  22415  scmatf1  22418  scmatmhm  22421  mdet1  22488  mdetunilem8  22506  mdetuni0  22508  mdetmul  22510  madulid  22532  matunit  22565  slesolinv  22567  slesolinvbi  22568  slesolex  22569  pmatring  22579  mat2pmatghm  22617  mat2pmatmul  22618  mat2pmat1  22619  mat2pmatmhm  22620  mat2pmatrhm  22621  m2cpmrhm  22633  m2pmfzgsumcl  22635  m2cpminv0  22648  decpmataa0  22655  decpmatmul  22659  monmatcollpw  22666  pmatcollpw3fi1lem1  22673  pmatcollpw3fi1lem2  22674  pm2mpf1lem  22681  pm2mpcl  22684  pm2mpf1  22686  pm2mpcoe1  22687  idpm2idmp  22688  mp2pm2mplem5  22697  mp2pm2mp  22698  pm2mpghmlem2  22699  pm2mpghmlem1  22700  pm2mpghm  22703  pm2mpmhmlem1  22705  pm2mpmhmlem2  22706  pm2mpmhm  22707  pm2mprhm  22708  monmat2matmon  22711  pm2mp  22712  chpmat0d  22721  chpmat1dlem  22722  chpmat1d  22723  chp0mat  22733  chpidmat  22734  cpmidgsumm2pm  22756  cpmidpmatlem2  22758  cpmidpmatlem3  22759  cpmadugsumlemB  22761  cpmadugsumlemC  22762  cayhamlem2  22771  chcoeffeqlem  22772  cayhamlem4  22775  matunitlindflem2  37611  matunitlindf  37612
  Copyright terms: Public domain W3C validator