MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matring Structured version   Visualization version   GIF version

Theorem matring 22361
Description: Existence of the matrix ring, see also the statement in [Lang] p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
matassa.a 𝐴 = (𝑁 Mat 𝑅)
Assertion
Ref Expression
matring ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)

Proof of Theorem matring
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matassa.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2matbas2 22339 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
4 eqidd 2734 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g𝐴) = (+g𝐴))
5 eqid 2733 . . 3 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
61, 5matmulr 22356 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
71matgrp 22348 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
8 simp1r 1199 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
9 simp1l 1198 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
10 simp2 1137 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
11 simp3 1138 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
122, 8, 5, 9, 9, 9, 10, 11mamucl 22319 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑅 ∈ Ring)
14 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑁 ∈ Fin)
15 simpr1 1195 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
16 simpr2 1196 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
17 simpr3 1197 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
182, 13, 14, 14, 14, 14, 15, 16, 17, 5, 5, 5, 5mamuass 22320 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
19 eqid 2733 . . . 4 (+g𝑅) = (+g𝑅)
202, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudir 22322 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
213adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
2216, 21eleqtrd 2835 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴))
2317, 21eleqtrd 2835 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴))
24 eqid 2733 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
25 eqid 2733 . . . . . 6 (+g𝐴) = (+g𝐴)
261, 24, 25, 19matplusg2 22345 . . . . 5 ((𝑦 ∈ (Base‘𝐴) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2722, 23, 26syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑅)𝑧))
2827oveq2d 7370 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦f (+g𝑅)𝑧)))
292, 13, 5, 14, 14, 14, 15, 16mamucl 22319 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3029, 21eleqtrd 2835 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴))
312, 13, 5, 14, 14, 14, 15, 17mamucl 22319 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
3231, 21eleqtrd 2835 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
331, 24, 25, 19matplusg2 22345 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∈ (Base‘𝐴) ∧ (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3430, 32, 33syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦) ∘f (+g𝑅)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3520, 28, 343eqtr4d 2778 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑦(+g𝐴)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑦)(+g𝐴)(𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
362, 13, 5, 14, 14, 14, 19, 15, 16, 17mamudi 22321 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
3715, 21eleqtrd 2835 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝐴))
381, 24, 25, 19matplusg2 22345 . . . . 5 ((𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
3937, 22, 38syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑅)𝑦))
4039oveq1d 7369 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥f (+g𝑅)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧))
412, 13, 5, 14, 14, 14, 16, 17mamucl 22319 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
4241, 21eleqtrd 2835 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴))
431, 24, 25, 19matplusg2 22345 . . . 4 (((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴) ∧ (𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∈ (Base‘𝐴)) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4432, 42, 43syl2anc 584 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) ∘f (+g𝑅)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
4536, 40, 443eqtr4d 2778 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))) → ((𝑥(+g𝐴)𝑦)(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧) = ((𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)(+g𝐴)(𝑦(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑧)))
46 simpr 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
47 eqid 2733 . . 3 (1r𝑅) = (1r𝑅)
48 eqid 2733 . . 3 (0g𝑅) = (0g𝑅)
49 eqid 2733 . . 3 (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))
50 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
512, 46, 47, 48, 49, 50mamumat1cl 22357 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅))) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
52 simplr 768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑅 ∈ Ring)
53 simpll 766 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑁 ∈ Fin)
54 simpr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
552, 52, 47, 48, 49, 53, 53, 5, 54mamulid 22359 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → ((𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
562, 52, 47, 48, 49, 53, 53, 5, 54mamurid 22360 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝑏, (1r𝑅), (0g𝑅)))) = 𝑥)
573, 4, 6, 7, 12, 18, 35, 45, 51, 55, 56isringd 20213 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  ifcif 4476  cotp 4585   × cxp 5619  cfv 6488  (class class class)co 7354  cmpo 7356  f cof 7616  m cmap 8758  Fincfn 8877  Basecbs 17124  +gcplusg 17165  0gc0g 17347  1rcur 20103  Ringcrg 20155   maMul cmmul 22308   Mat cmat 22325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-sup 9335  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-gsum 17350  df-prds 17355  df-pws 17357  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-submnd 18696  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18985  df-subg 19040  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-subrg 20489  df-lmod 20799  df-lss 20869  df-sra 21111  df-rgmod 21112  df-dsmm 21673  df-frlm 21688  df-mamu 22309  df-mat 22326
This theorem is referenced by:  matassa  22362  mat1  22365  mat1bas  22367  matsc  22368  mat0dim0  22385  mat0dimid  22386  mat0dimcrng  22388  mat1dimcrng  22395  mat1ghm  22401  mat1mhm  22402  mat1rhm  22403  dmatid  22413  dmatsgrp  22417  dmatsrng  22419  scmatscmide  22425  scmatscmiddistr  22426  scmatmats  22429  scmatscm  22431  scmatid  22432  scmataddcl  22434  scmatsubcl  22435  scmatmulcl  22436  scmatsgrp  22437  scmatsrng  22438  smatvscl  22442  scmatrhmcl  22446  scmatf1  22449  scmatmhm  22452  mdet1  22519  mdetunilem8  22537  mdetuni0  22539  mdetmul  22541  madulid  22563  matunit  22596  slesolinv  22598  slesolinvbi  22599  slesolex  22600  pmatring  22610  mat2pmatghm  22648  mat2pmatmul  22649  mat2pmat1  22650  mat2pmatmhm  22651  mat2pmatrhm  22652  m2cpmrhm  22664  m2pmfzgsumcl  22666  m2cpminv0  22679  decpmataa0  22686  decpmatmul  22690  monmatcollpw  22697  pmatcollpw3fi1lem1  22704  pmatcollpw3fi1lem2  22705  pm2mpf1lem  22712  pm2mpcl  22715  pm2mpf1  22717  pm2mpcoe1  22718  idpm2idmp  22719  mp2pm2mplem5  22728  mp2pm2mp  22729  pm2mpghmlem2  22730  pm2mpghmlem1  22731  pm2mpghm  22734  pm2mpmhmlem1  22736  pm2mpmhmlem2  22737  pm2mpmhm  22738  pm2mprhm  22739  monmat2matmon  22742  pm2mp  22743  chpmat0d  22752  chpmat1dlem  22753  chpmat1d  22754  chp0mat  22764  chpidmat  22765  cpmidgsumm2pm  22787  cpmidpmatlem2  22789  cpmidpmatlem3  22790  cpmadugsumlemB  22792  cpmadugsumlemC  22793  cayhamlem2  22802  chcoeffeqlem  22803  cayhamlem4  22806  matunitlindflem2  37680  matunitlindf  37681
  Copyright terms: Public domain W3C validator