MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1 Structured version   Visualization version   GIF version

Theorem mat1 22454
Description: Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.)
Hypotheses
Ref Expression
mat1.a 𝐴 = (𝑁 Mat 𝑅)
mat1.o 1 = (1r𝑅)
mat1.z 0 = (0g𝑅)
Assertion
Ref Expression
mat1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
Distinct variable groups:   𝑖,𝑗, 0   1 ,𝑖,𝑗   𝐴,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗

Proof of Theorem mat1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 simpr 484 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3 mat1.o . . . 4 1 = (1r𝑅)
4 mat1.z . . . 4 0 = (0g𝑅)
5 eqid 2736 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))
6 simpl 482 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mamumat1cl 22446 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
8 mat1.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
98, 1matbas2 22428 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
107, 9eleqtrd 2842 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴))
11 eqid 2736 . . . . . . . 8 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
128, 11matmulr 22445 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1312adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1413oveqd 7449 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥))
15 simplr 768 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑅 ∈ Ring)
16 simpll 766 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑁 ∈ Fin)
179eleq2d 2826 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑥 ∈ (Base‘𝐴)))
1817biimpar 477 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 15, 3, 4, 5, 16, 16, 11, 18mamulid 22448 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
2014, 19eqtr3d 2778 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥)
2113oveqd 7449 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
221, 15, 3, 4, 5, 16, 16, 11, 18mamurid 22449 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)
2321, 22eqtr3d 2778 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)
2420, 23jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥))
2524ralrimiva 3145 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥))
268matring 22450 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
27 eqid 2736 . . . 4 (Base‘𝐴) = (Base‘𝐴)
28 eqid 2736 . . . 4 (.r𝐴) = (.r𝐴)
29 eqid 2736 . . . 4 (1r𝐴) = (1r𝐴)
3027, 28, 29isringid 20269 . . 3 (𝐴 ∈ Ring → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
3126, 30syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
3210, 25, 31mpbi2and 712 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  ifcif 4524  cotp 4633   × cxp 5682  cfv 6560  (class class class)co 7432  cmpo 7434  m cmap 8867  Fincfn 8986  Basecbs 17248  .rcmulr 17299  0gc0g 17485  1rcur 20179  Ringcrg 20231   maMul cmmul 22395   Mat cmat 22412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-subrg 20571  df-lmod 20861  df-lss 20931  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-mamu 22396  df-mat 22413
This theorem is referenced by:  mat1ov  22455  matsc  22457  mattpos1  22463  mat1dimid  22481  1mavmul  22555  1marepvsma1  22590  pmat1op  22703  decpmatid  22777
  Copyright terms: Public domain W3C validator