MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1 Structured version   Visualization version   GIF version

Theorem mat1 21052
Description: Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.)
Hypotheses
Ref Expression
mat1.a 𝐴 = (𝑁 Mat 𝑅)
mat1.o 1 = (1r𝑅)
mat1.z 0 = (0g𝑅)
Assertion
Ref Expression
mat1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
Distinct variable groups:   𝑖,𝑗, 0   1 ,𝑖,𝑗   𝐴,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗

Proof of Theorem mat1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 simpr 488 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3 mat1.o . . . 4 1 = (1r𝑅)
4 mat1.z . . . 4 0 = (0g𝑅)
5 eqid 2798 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))
6 simpl 486 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mamumat1cl 21044 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
8 mat1.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
98, 1matbas2 21026 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
107, 9eleqtrd 2892 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴))
11 eqid 2798 . . . . . . . 8 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
128, 11matmulr 21043 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1312adantr 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1413oveqd 7152 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥))
15 simplr 768 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑅 ∈ Ring)
16 simpll 766 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑁 ∈ Fin)
179eleq2d 2875 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑥 ∈ (Base‘𝐴)))
1817biimpar 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 15, 3, 4, 5, 16, 16, 11, 18mamulid 21046 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
2014, 19eqtr3d 2835 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥)
2113oveqd 7152 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
221, 15, 3, 4, 5, 16, 16, 11, 18mamurid 21047 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)
2321, 22eqtr3d 2835 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)
2420, 23jca 515 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥))
2524ralrimiva 3149 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥))
268matring 21048 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
27 eqid 2798 . . . 4 (Base‘𝐴) = (Base‘𝐴)
28 eqid 2798 . . . 4 (.r𝐴) = (.r𝐴)
29 eqid 2798 . . . 4 (1r𝐴) = (1r𝐴)
3027, 28, 29isringid 19319 . . 3 (𝐴 ∈ Ring → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
3126, 30syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
3210, 25, 31mpbi2and 711 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  ifcif 4425  cotp 4533   × cxp 5517  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Fincfn 8492  Basecbs 16475  .rcmulr 16558  0gc0g 16705  1rcur 19244  Ringcrg 19290   maMul cmmul 20990   Mat cmat 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-mamu 20991  df-mat 21013
This theorem is referenced by:  mat1ov  21053  matsc  21055  mattpos1  21061  mat1dimid  21079  1mavmul  21153  1marepvsma1  21188  pmat1op  21301  decpmatid  21375
  Copyright terms: Public domain W3C validator