![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1 | Structured version Visualization version GIF version |
Description: Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.) |
Ref | Expression |
---|---|
mat1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mat1.o | ⊢ 1 = (1r‘𝑅) |
mat1.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mat1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2797 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | simpr 478 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
3 | mat1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
4 | mat1.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | eqid 2797 | . . . 4 ⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
6 | simpl 475 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) | |
7 | 1, 2, 3, 4, 5, 6 | mamumat1cl 20567 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
8 | mat1.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | 8, 1 | matbas2 20549 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
10 | 7, 9 | eleqtrd 2878 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴)) |
11 | eqid 2797 | . . . . . . . 8 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
12 | 8, 11 | matmulr 20566 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
13 | 12 | adantr 473 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
14 | 13 | oveqd 6893 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑥) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥)) |
15 | simplr 786 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑅 ∈ Ring) | |
16 | simpll 784 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑁 ∈ Fin) | |
17 | 9 | eleq2d 2862 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ↔ 𝑥 ∈ (Base‘𝐴))) |
18 | 17 | biimpar 470 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
19 | 1, 15, 3, 4, 5, 16, 16, 11, 18 | mamulid 20569 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑥) = 𝑥) |
20 | 14, 19 | eqtr3d 2833 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥) |
21 | 13 | oveqd 6893 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))) |
22 | 1, 15, 3, 4, 5, 16, 16, 11, 18 | mamurid 20570 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥) |
23 | 21, 22 | eqtr3d 2833 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥) |
24 | 20, 23 | jca 508 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) |
25 | 24 | ralrimiva 3145 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)(((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) |
26 | 8 | matring 20571 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
27 | eqid 2797 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
28 | eqid 2797 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
29 | eqid 2797 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
30 | 27, 28, 29 | isringid 18886 | . . 3 ⊢ (𝐴 ∈ Ring → (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))) |
31 | 26, 30 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))) |
32 | 10, 25, 31 | mpbi2and 704 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ifcif 4275 〈cotp 4374 × cxp 5308 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 ↑𝑚 cmap 8093 Fincfn 8193 Basecbs 16181 .rcmulr 16265 0gc0g 16412 1rcur 18814 Ringcrg 18860 maMul cmmul 20511 Mat cmat 20535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-inf2 8786 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-ot 4375 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-ixp 8147 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-sup 8588 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-fzo 12717 df-seq 13052 df-hash 13367 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-sca 16280 df-vsca 16281 df-ip 16282 df-tset 16283 df-ple 16284 df-ds 16286 df-hom 16288 df-cco 16289 df-0g 16414 df-gsum 16415 df-prds 16420 df-pws 16422 df-mre 16558 df-mrc 16559 df-acs 16561 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-mhm 17647 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-mulg 17854 df-subg 17901 df-ghm 17968 df-cntz 18059 df-cmn 18507 df-abl 18508 df-mgp 18803 df-ur 18815 df-ring 18862 df-subrg 19093 df-lmod 19180 df-lss 19248 df-sra 19492 df-rgmod 19493 df-dsmm 20398 df-frlm 20413 df-mamu 20512 df-mat 20536 |
This theorem is referenced by: mat1ov 20577 matsc 20579 mattpos1 20585 mat1dimid 20603 1mavmul 20677 1marepvsma1 20712 pmat1op 20826 decpmatid 20900 |
Copyright terms: Public domain | W3C validator |