![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1 | Structured version Visualization version GIF version |
Description: Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.) |
Ref | Expression |
---|---|
mat1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mat1.o | ⊢ 1 = (1r‘𝑅) |
mat1.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mat1 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
3 | mat1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
4 | mat1.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
5 | eqid 2735 | . . . 4 ⊢ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
6 | simpl 482 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin) | |
7 | 1, 2, 3, 4, 5, 6 | mamumat1cl 22461 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
8 | mat1.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
9 | 8, 1 | matbas2 22443 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
10 | 7, 9 | eleqtrd 2841 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴)) |
11 | eqid 2735 | . . . . . . . 8 ⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) | |
12 | 8, 11 | matmulr 22460 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
14 | 13 | oveqd 7448 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑥) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥)) |
15 | simplr 769 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑅 ∈ Ring) | |
16 | simpll 767 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑁 ∈ Fin) | |
17 | 9 | eleq2d 2825 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑥 ∈ (Base‘𝐴))) |
18 | 17 | biimpar 477 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
19 | 1, 15, 3, 4, 5, 16, 16, 11, 18 | mamulid 22463 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑥) = 𝑥) |
20 | 14, 19 | eqtr3d 2777 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥) |
21 | 13 | oveqd 7448 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))) |
22 | 1, 15, 3, 4, 5, 16, 16, 11, 18 | mamurid 22464 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥) |
23 | 21, 22 | eqtr3d 2777 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥) |
24 | 20, 23 | jca 511 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) |
25 | 24 | ralrimiva 3144 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)(((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) |
26 | 8 | matring 22465 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
27 | eqid 2735 | . . . 4 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
28 | eqid 2735 | . . . 4 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
29 | eqid 2735 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
30 | 27, 28, 29 | isringid 20285 | . . 3 ⊢ (𝐴 ∈ Ring → (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))) |
31 | 26, 30 | syl 17 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r‘𝐴)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐴)(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))) |
32 | 10, 25, 31 | mpbi2and 712 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ifcif 4531 〈cotp 4639 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8865 Fincfn 8984 Basecbs 17245 .rcmulr 17299 0gc0g 17486 1rcur 20199 Ringcrg 20251 maMul cmmul 22410 Mat cmat 22427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-subrg 20587 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-dsmm 21770 df-frlm 21785 df-mamu 22411 df-mat 22428 |
This theorem is referenced by: mat1ov 22470 matsc 22472 mattpos1 22478 mat1dimid 22496 1mavmul 22570 1marepvsma1 22605 pmat1op 22718 decpmatid 22792 |
Copyright terms: Public domain | W3C validator |