MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1 Structured version   Visualization version   GIF version

Theorem mat1 22182
Description: Value of an identity matrix, see also the statement in [Lang] p. 504: "The unit element of the ring of n x n matrices is the matrix In ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015.)
Hypotheses
Ref Expression
mat1.a 𝐴 = (𝑁 Mat 𝑅)
mat1.o 1 = (1r𝑅)
mat1.z 0 = (0g𝑅)
Assertion
Ref Expression
mat1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
Distinct variable groups:   𝑖,𝑗, 0   1 ,𝑖,𝑗   𝐴,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗

Proof of Theorem mat1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 simpr 484 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3 mat1.o . . . 4 1 = (1r𝑅)
4 mat1.z . . . 4 0 = (0g𝑅)
5 eqid 2731 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))
6 simpl 482 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑁 ∈ Fin)
71, 2, 3, 4, 5, 6mamumat1cl 22174 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
8 mat1.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
98, 1matbas2 22156 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
107, 9eleqtrd 2834 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴))
11 eqid 2731 . . . . . . . 8 (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
128, 11matmulr 22173 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1312adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩) = (.r𝐴))
1413oveqd 7429 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥))
15 simplr 766 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑅 ∈ Ring)
16 simpll 764 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑁 ∈ Fin)
179eleq2d 2818 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) ↔ 𝑥 ∈ (Base‘𝐴)))
1817biimpar 477 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
191, 15, 3, 4, 5, 16, 16, 11, 18mamulid 22176 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)𝑥) = 𝑥)
2014, 19eqtr3d 2773 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥)
2113oveqd 7429 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
221, 15, 3, 4, 5, 16, 16, 11, 18mamurid 22177 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)
2321, 22eqtr3d 2773 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)
2420, 23jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐴)) → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥))
2524ralrimiva 3145 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥))
268matring 22178 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
27 eqid 2731 . . . 4 (Base‘𝐴) = (Base‘𝐴)
28 eqid 2731 . . . 4 (.r𝐴) = (.r𝐴)
29 eqid 2731 . . . 4 (1r𝐴) = (1r𝐴)
3027, 28, 29isringid 20163 . . 3 (𝐴 ∈ Ring → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
3126, 30syl 17 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )) ∈ (Base‘𝐴) ∧ ∀𝑥 ∈ (Base‘𝐴)(((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))(.r𝐴)𝑥) = 𝑥 ∧ (𝑥(.r𝐴)(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) = 𝑥)) ↔ (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))))
3210, 25, 31mpbi2and 709 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  ifcif 4528  cotp 4636   × cxp 5674  cfv 6543  (class class class)co 7412  cmpo 7414  m cmap 8826  Fincfn 8945  Basecbs 17151  .rcmulr 17205  0gc0g 17392  1rcur 20079  Ringcrg 20131   maMul cmmul 22118   Mat cmat 22140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-cntz 19226  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-ring 20133  df-subrg 20463  df-lmod 20620  df-lss 20691  df-sra 20934  df-rgmod 20935  df-dsmm 21510  df-frlm 21525  df-mamu 22119  df-mat 22141
This theorem is referenced by:  mat1ov  22183  matsc  22185  mattpos1  22191  mat1dimid  22209  1mavmul  22283  1marepvsma1  22318  pmat1op  22431  decpmatid  22505
  Copyright terms: Public domain W3C validator