MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj2 Structured version   Visualization version   GIF version

Theorem lspdisj2 21044
Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lspdisj2.v 𝑉 = (Base‘𝑊)
lspdisj2.o 0 = (0g𝑊)
lspdisj2.n 𝑁 = (LSpan‘𝑊)
lspdisj2.w (𝜑𝑊 ∈ LVec)
lspdisj2.x (𝜑𝑋𝑉)
lspdisj2.y (𝜑𝑌𝑉)
lspdisj2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspdisj2 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })

Proof of Theorem lspdisj2
StepHypRef Expression
1 sneq 4602 . . . . . 6 (𝑋 = 0 → {𝑋} = { 0 })
21fveq2d 6865 . . . . 5 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
3 lspdisj2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 21020 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lspdisj2.o . . . . . . 7 0 = (0g𝑊)
7 lspdisj2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
86, 7lspsn0 20921 . . . . . 6 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
95, 8syl 17 . . . . 5 (𝜑 → (𝑁‘{ 0 }) = { 0 })
102, 9sylan9eqr 2787 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1110ineq1d 4185 . . 3 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = ({ 0 } ∩ (𝑁‘{𝑌})))
12 lspdisj2.y . . . . . . 7 (𝜑𝑌𝑉)
13 lspdisj2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 eqid 2730 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 7lspsncl 20890 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
165, 12, 15syl2anc 584 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
176, 14lss0ss 20862 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘{𝑌}))
185, 16, 17syl2anc 584 . . . . 5 (𝜑 → { 0 } ⊆ (𝑁‘{𝑌}))
19 dfss2 3935 . . . . 5 ({ 0 } ⊆ (𝑁‘{𝑌}) ↔ ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2018, 19sylib 218 . . . 4 (𝜑 → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2120adantr 480 . . 3 ((𝜑𝑋 = 0 ) → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2211, 21eqtrd 2765 . 2 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
233adantr 480 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LVec)
2416adantr 480 . . 3 ((𝜑𝑋0 ) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
25 lspdisj2.x . . . 4 (𝜑𝑋𝑉)
2625adantr 480 . . 3 ((𝜑𝑋0 ) → 𝑋𝑉)
27 lspdisj2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2827adantr 480 . . . 4 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2923adantr 480 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
3012adantr 480 . . . . . . . 8 ((𝜑𝑋0 ) → 𝑌𝑉)
3130adantr 480 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 484 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
33 simplr 768 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋0 )
3413, 6, 7, 29, 31, 32, 33lspsneleq 21032 . . . . . 6 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3534ex 412 . . . . 5 ((𝜑𝑋0 ) → (𝑋 ∈ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3635necon3ad 2939 . . . 4 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → ¬ 𝑋 ∈ (𝑁‘{𝑌})))
3728, 36mpd 15 . . 3 ((𝜑𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
3813, 6, 7, 14, 23, 24, 26, 37lspdisj 21042 . 2 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
3922, 38pm2.61dane 3013 1 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cin 3916  wss 3917  {csn 4592  cfv 6514  Basecbs 17186  0gc0g 17409  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884  LVecclvec 21016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017
This theorem is referenced by:  lvecindp2  21056  hdmaprnlem9N  41858
  Copyright terms: Public domain W3C validator