MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj2 Structured version   Visualization version   GIF version

Theorem lspdisj2 20304
Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lspdisj2.v 𝑉 = (Base‘𝑊)
lspdisj2.o 0 = (0g𝑊)
lspdisj2.n 𝑁 = (LSpan‘𝑊)
lspdisj2.w (𝜑𝑊 ∈ LVec)
lspdisj2.x (𝜑𝑋𝑉)
lspdisj2.y (𝜑𝑌𝑉)
lspdisj2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspdisj2 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })

Proof of Theorem lspdisj2
StepHypRef Expression
1 sneq 4568 . . . . . 6 (𝑋 = 0 → {𝑋} = { 0 })
21fveq2d 6760 . . . . 5 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
3 lspdisj2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 20283 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lspdisj2.o . . . . . . 7 0 = (0g𝑊)
7 lspdisj2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
86, 7lspsn0 20185 . . . . . 6 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
95, 8syl 17 . . . . 5 (𝜑 → (𝑁‘{ 0 }) = { 0 })
102, 9sylan9eqr 2801 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1110ineq1d 4142 . . 3 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = ({ 0 } ∩ (𝑁‘{𝑌})))
12 lspdisj2.y . . . . . . 7 (𝜑𝑌𝑉)
13 lspdisj2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 eqid 2738 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 7lspsncl 20154 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
165, 12, 15syl2anc 583 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
176, 14lss0ss 20125 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘{𝑌}))
185, 16, 17syl2anc 583 . . . . 5 (𝜑 → { 0 } ⊆ (𝑁‘{𝑌}))
19 df-ss 3900 . . . . 5 ({ 0 } ⊆ (𝑁‘{𝑌}) ↔ ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2018, 19sylib 217 . . . 4 (𝜑 → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2120adantr 480 . . 3 ((𝜑𝑋 = 0 ) → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2211, 21eqtrd 2778 . 2 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
233adantr 480 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LVec)
2416adantr 480 . . 3 ((𝜑𝑋0 ) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
25 lspdisj2.x . . . 4 (𝜑𝑋𝑉)
2625adantr 480 . . 3 ((𝜑𝑋0 ) → 𝑋𝑉)
27 lspdisj2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2827adantr 480 . . . 4 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2923adantr 480 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
3012adantr 480 . . . . . . . 8 ((𝜑𝑋0 ) → 𝑌𝑉)
3130adantr 480 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 484 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
33 simplr 765 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋0 )
3413, 6, 7, 29, 31, 32, 33lspsneleq 20292 . . . . . 6 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3534ex 412 . . . . 5 ((𝜑𝑋0 ) → (𝑋 ∈ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3635necon3ad 2955 . . . 4 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → ¬ 𝑋 ∈ (𝑁‘{𝑌})))
3728, 36mpd 15 . . 3 ((𝜑𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
3813, 6, 7, 14, 23, 24, 26, 37lspdisj 20302 . 2 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
3922, 38pm2.61dane 3031 1 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  {csn 4558  cfv 6418  Basecbs 16840  0gc0g 17067  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  lvecindp2  20316  hdmaprnlem9N  39798
  Copyright terms: Public domain W3C validator