Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspdisj2 Structured version   Visualization version   GIF version

Theorem lspdisj2 19891
 Description: Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
lspdisj2.v 𝑉 = (Base‘𝑊)
lspdisj2.o 0 = (0g𝑊)
lspdisj2.n 𝑁 = (LSpan‘𝑊)
lspdisj2.w (𝜑𝑊 ∈ LVec)
lspdisj2.x (𝜑𝑋𝑉)
lspdisj2.y (𝜑𝑌𝑉)
lspdisj2.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspdisj2 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })

Proof of Theorem lspdisj2
StepHypRef Expression
1 sneq 4569 . . . . . 6 (𝑋 = 0 → {𝑋} = { 0 })
21fveq2d 6667 . . . . 5 (𝑋 = 0 → (𝑁‘{𝑋}) = (𝑁‘{ 0 }))
3 lspdisj2.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
4 lveclmod 19870 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
6 lspdisj2.o . . . . . . 7 0 = (0g𝑊)
7 lspdisj2.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
86, 7lspsn0 19772 . . . . . 6 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
95, 8syl 17 . . . . 5 (𝜑 → (𝑁‘{ 0 }) = { 0 })
102, 9sylan9eqr 2876 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
1110ineq1d 4186 . . 3 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = ({ 0 } ∩ (𝑁‘{𝑌})))
12 lspdisj2.y . . . . . . 7 (𝜑𝑌𝑉)
13 lspdisj2.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 eqid 2819 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 7lspsncl 19741 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
165, 12, 15syl2anc 586 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
176, 14lss0ss 19712 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘{𝑌}))
185, 16, 17syl2anc 586 . . . . 5 (𝜑 → { 0 } ⊆ (𝑁‘{𝑌}))
19 df-ss 3950 . . . . 5 ({ 0 } ⊆ (𝑁‘{𝑌}) ↔ ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2018, 19sylib 220 . . . 4 (𝜑 → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2120adantr 483 . . 3 ((𝜑𝑋 = 0 ) → ({ 0 } ∩ (𝑁‘{𝑌})) = { 0 })
2211, 21eqtrd 2854 . 2 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
233adantr 483 . . 3 ((𝜑𝑋0 ) → 𝑊 ∈ LVec)
2416adantr 483 . . 3 ((𝜑𝑋0 ) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
25 lspdisj2.x . . . 4 (𝜑𝑋𝑉)
2625adantr 483 . . 3 ((𝜑𝑋0 ) → 𝑋𝑉)
27 lspdisj2.q . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2827adantr 483 . . . 4 ((𝜑𝑋0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2923adantr 483 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑊 ∈ LVec)
3012adantr 483 . . . . . . . 8 ((𝜑𝑋0 ) → 𝑌𝑉)
3130adantr 483 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑌𝑉)
32 simpr 487 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌}))
33 simplr 767 . . . . . . 7 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → 𝑋0 )
3413, 6, 7, 29, 31, 32, 33lspsneleq 19879 . . . . . 6 (((𝜑𝑋0 ) ∧ 𝑋 ∈ (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3534ex 415 . . . . 5 ((𝜑𝑋0 ) → (𝑋 ∈ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3635necon3ad 3027 . . . 4 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → ¬ 𝑋 ∈ (𝑁‘{𝑌})))
3728, 36mpd 15 . . 3 ((𝜑𝑋0 ) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
3813, 6, 7, 14, 23, 24, 26, 37lspdisj 19889 . 2 ((𝜑𝑋0 ) → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
3922, 38pm2.61dane 3102 1 (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 })
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107   ≠ wne 3014   ∩ cin 3933   ⊆ wss 3934  {csn 4559  ‘cfv 6348  Basecbs 16475  0gc0g 16705  LModclmod 19626  LSubSpclss 19695  LSpanclspn 19735  LVecclvec 19866 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867 This theorem is referenced by:  lvecindp2  19903  hdmaprnlem9N  38980
 Copyright terms: Public domain W3C validator