Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nprm | Structured version Visualization version GIF version |
Description: A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.) |
Ref | Expression |
---|---|
nprm | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelz 12334 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℤ) | |
2 | 1 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℤ) |
3 | 2 | zred 12168 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℝ) |
4 | eluz2gt1 12402 | . . . . 5 ⊢ (𝐵 ∈ (ℤ≥‘2) → 1 < 𝐵) | |
5 | 4 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 1 < 𝐵) |
6 | eluzelz 12334 | . . . . . . 7 ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ ℤ) | |
7 | 6 | adantl 485 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐵 ∈ ℤ) |
8 | 7 | zred 12168 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐵 ∈ ℝ) |
9 | eluz2nn 12366 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
10 | 9 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∈ ℕ) |
11 | 10 | nngt0d 11765 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 0 < 𝐴) |
12 | ltmulgt11 11578 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) | |
13 | 3, 8, 11, 12 | syl3anc 1372 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → (1 < 𝐵 ↔ 𝐴 < (𝐴 · 𝐵))) |
14 | 5, 13 | mpbid 235 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 < (𝐴 · 𝐵)) |
15 | 3, 14 | ltned 10854 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ≠ (𝐴 · 𝐵)) |
16 | dvdsmul1 15723 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∥ (𝐴 · 𝐵)) | |
17 | 1, 6, 16 | syl2an 599 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → 𝐴 ∥ (𝐴 · 𝐵)) |
18 | isprm4 16125 | . . . . . . 7 ⊢ ((𝐴 · 𝐵) ∈ ℙ ↔ ((𝐴 · 𝐵) ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)))) | |
19 | 18 | simprbi 500 | . . . . . 6 ⊢ ((𝐴 · 𝐵) ∈ ℙ → ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵))) |
20 | breq1 5033 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∥ (𝐴 · 𝐵) ↔ 𝐴 ∥ (𝐴 · 𝐵))) | |
21 | eqeq1 2742 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 = (𝐴 · 𝐵) ↔ 𝐴 = (𝐴 · 𝐵))) | |
22 | 20, 21 | imbi12d 348 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) ↔ (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
23 | 22 | rspcv 3521 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ (𝐴 · 𝐵) → 𝑥 = (𝐴 · 𝐵)) → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
24 | 19, 23 | syl5 34 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
25 | 24 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ((𝐴 · 𝐵) ∈ ℙ → (𝐴 ∥ (𝐴 · 𝐵) → 𝐴 = (𝐴 · 𝐵)))) |
26 | 17, 25 | mpid 44 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ((𝐴 · 𝐵) ∈ ℙ → 𝐴 = (𝐴 · 𝐵))) |
27 | 26 | necon3ad 2947 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → (𝐴 ≠ (𝐴 · 𝐵) → ¬ (𝐴 · 𝐵) ∈ ℙ)) |
28 | 15, 27 | mpd 15 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 class class class wbr 5030 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 0cc0 10615 1c1 10616 · cmul 10620 < clt 10753 ℕcn 11716 2c2 11771 ℤcz 12062 ℤ≥cuz 12324 ∥ cdvds 15699 ℙcprime 16112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-2o 8132 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-dvds 15700 df-prm 16113 |
This theorem is referenced by: nprmi 16130 dvdsnprmd 16131 2mulprm 16134 sqnprm 16143 mersenne 25963 341fppr2 44720 9fppr8 44723 nfermltl2rev 44729 ztprmneprm 45217 |
Copyright terms: Public domain | W3C validator |