MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprmpw2 Structured version   Visualization version   GIF version

Theorem pcprmpw2 16754
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Distinct variable groups:   𝐴,𝑛   𝑃,𝑛

Proof of Theorem pcprmpw2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ)
21nnnn0d 12473 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ0)
3 prmnn 16550 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43ad2antrr 724 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℕ)
5 pccl 16721 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
65adantr 481 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℕ0)
74, 6nnexpcld 14148 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
87nnnn0d 12473 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0)
96nn0red 12474 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℝ)
109leidd 11721 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
11 simpll 765 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℙ)
126nn0zd 12525 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℤ)
13 pcid 16745 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝐴) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1411, 12, 13syl2anc 584 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1510, 14breqtrrd 5133 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
1615ad2antrr 724 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
17 simpr 485 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1817oveq1d 7372 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) = (𝑃 pCnt 𝐴))
1917oveq1d 7372 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
2016, 18, 193brtr4d 5137 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
21 simplrr 776 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝑃𝑛))
22 prmz 16551 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2322adantl 482 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
241adantr 481 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
2524nnzd 12526 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
26 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑛 ∈ ℕ0)
274, 26nnexpcld 14148 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃𝑛) ∈ ℕ)
2827adantr 481 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℕ)
2928nnzd 12526 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℤ)
30 dvdstr 16176 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑃𝑛) ∈ ℤ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3123, 25, 29, 30syl3anc 1371 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3221, 31mpan2d 692 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 ∥ (𝑃𝑛)))
33 simpr 485 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3411adantr 481 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℙ)
35 simplrl 775 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ0)
36 prmdvdsexpr 16593 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3733, 34, 35, 36syl3anc 1371 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3832, 37syld 47 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 = 𝑃))
3938necon3ad 2956 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝𝐴))
4039imp 407 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝𝐴)
41 simplr 767 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
421ad2antrr 724 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝐴 ∈ ℕ)
43 pceq0 16743 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4441, 42, 43syl2anc 584 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4540, 44mpbird 256 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) = 0)
467ad2antrr 724 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
4741, 46pccld 16722 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ0)
4847nn0ge0d 12476 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
4945, 48eqbrtrd 5127 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5020, 49pm2.61dane 3032 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5150ralrimiva 3143 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
521nnzd 12526 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℤ)
537nnzd 12526 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
54 pc2dvds 16751 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
5552, 53, 54syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
5651, 55mpbird 256 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)))
57 pcdvds 16736 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
5857adantr 481 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
59 dvdseq 16196 . . . 4 (((𝐴 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0) ∧ (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
602, 8, 56, 58, 59syl22anc 837 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
6160rexlimdvaa 3153 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
623adantr 481 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℕ)
6362, 5nnexpcld 14148 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
6463nnzd 12526 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
65 iddvds 16152 . . . . 5 ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
6664, 65syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
67 oveq2 7365 . . . . . 6 (𝑛 = (𝑃 pCnt 𝐴) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝐴)))
6867breq2d 5117 . . . . 5 (𝑛 = (𝑃 pCnt 𝐴) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))))
6968rspcev 3581 . . . 4 (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
705, 66, 69syl2anc 584 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
71 breq1 5108 . . . 4 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (𝐴 ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7271rexbidv 3175 . . 3 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7370, 72syl5ibrcom 246 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛)))
7461, 73impbid 211 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073   class class class wbr 5105  (class class class)co 7357  0cc0 11051  cle 11190  cn 12153  0cn0 12413  cz 12499  cexp 13967  cdvds 16136  cprime 16547   pCnt cpc 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709
This theorem is referenced by:  pcprmpw  16755  dvdsprmpweq  16756  pgpfi1  19377  pgpfi  19387  sylow2alem2  19400  lt6abl  19672  pgpfac1lem3a  19855  dvdsppwf1o  26535
  Copyright terms: Public domain W3C validator