MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprmpw2 Structured version   Visualization version   GIF version

Theorem pcprmpw2 16796
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
pcprmpw2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Distinct variable groups:   𝐴,𝑛   𝑃,𝑛

Proof of Theorem pcprmpw2
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ)
21nnnn0d 12449 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℕ0)
3 prmnn 16587 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43ad2antrr 726 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℕ)
5 pccl 16763 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
65adantr 480 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℕ0)
74, 6nnexpcld 14154 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
87nnnn0d 12449 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0)
96nn0red 12450 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℝ)
109leidd 11690 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐴))
11 simpll 766 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑃 ∈ ℙ)
126nn0zd 12500 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ∈ ℤ)
13 pcid 16787 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑃 pCnt 𝐴) ∈ ℤ) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1411, 12, 13syl2anc 584 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt 𝐴))
1510, 14breqtrrd 5121 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
1615ad2antrr 726 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
17 simpr 484 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → 𝑝 = 𝑃)
1817oveq1d 7367 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) = (𝑃 pCnt 𝐴))
1917oveq1d 7367 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) = (𝑃 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
2016, 18, 193brtr4d 5125 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝 = 𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
21 simplrr 777 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝑃𝑛))
22 prmz 16588 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2322adantl 481 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
241adantr 480 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
2524nnzd 12501 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
26 simprl 770 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝑛 ∈ ℕ0)
274, 26nnexpcld 14154 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃𝑛) ∈ ℕ)
2827adantr 480 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℕ)
2928nnzd 12501 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑃𝑛) ∈ ℤ)
30 dvdstr 16207 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑃𝑛) ∈ ℤ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3123, 25, 29, 30syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝐴 ∥ (𝑃𝑛)) → 𝑝 ∥ (𝑃𝑛)))
3221, 31mpan2d 694 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 ∥ (𝑃𝑛)))
33 simpr 484 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
3411adantr 480 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑃 ∈ ℙ)
35 simplrl 776 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → 𝑛 ∈ ℕ0)
36 prmdvdsexpr 16630 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3733, 34, 35, 36syl3anc 1373 . . . . . . . . . . . 12 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝑃𝑛) → 𝑝 = 𝑃))
3832, 37syld 47 . . . . . . . . . . 11 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝐴𝑝 = 𝑃))
3938necon3ad 2942 . . . . . . . . . 10 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝𝑃 → ¬ 𝑝𝐴))
4039imp 406 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ¬ 𝑝𝐴)
41 simplr 768 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝑝 ∈ ℙ)
421ad2antrr 726 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 𝐴 ∈ ℕ)
43 pceq0 16785 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4441, 42, 43syl2anc 584 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → ((𝑝 pCnt 𝐴) = 0 ↔ ¬ 𝑝𝐴))
4540, 44mpbird 257 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) = 0)
467ad2antrr 726 . . . . . . . . . 10 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
4741, 46pccld 16764 . . . . . . . . 9 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))) ∈ ℕ0)
4847nn0ge0d 12452 . . . . . . . 8 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → 0 ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
4945, 48eqbrtrd 5115 . . . . . . 7 (((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑃) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5020, 49pm2.61dane 3016 . . . . . 6 ((((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
5150ralrimiva 3125 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴))))
521nnzd 12501 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∈ ℤ)
537nnzd 12501 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
54 pc2dvds 16793 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
5552, 53, 54syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑃↑(𝑃 pCnt 𝐴)))))
5651, 55mpbird 257 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)))
57 pcdvds 16778 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
5857adantr 480 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
59 dvdseq 16227 . . . 4 (((𝐴 ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ0) ∧ (𝐴 ∥ (𝑃↑(𝑃 pCnt 𝐴)) ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
602, 8, 56, 58, 59syl22anc 838 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) ∧ (𝑛 ∈ ℕ0𝐴 ∥ (𝑃𝑛))) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴)))
6160rexlimdvaa 3135 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) → 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
623adantr 480 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → 𝑃 ∈ ℕ)
6362, 5nnexpcld 14154 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
6463nnzd 12501 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
65 iddvds 16182 . . . . 5 ((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
6664, 65syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴)))
67 oveq2 7360 . . . . . 6 (𝑛 = (𝑃 pCnt 𝐴) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝐴)))
6867breq2d 5105 . . . . 5 (𝑛 = (𝑃 pCnt 𝐴) → ((𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))))
6968rspcev 3573 . . . 4 (((𝑃 pCnt 𝐴) ∈ ℕ0 ∧ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃↑(𝑃 pCnt 𝐴))) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
705, 66, 69syl2anc 584 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛))
71 breq1 5096 . . . 4 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (𝐴 ∥ (𝑃𝑛) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7271rexbidv 3157 . . 3 (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (𝑃↑(𝑃 pCnt 𝐴)) ∥ (𝑃𝑛)))
7370, 72syl5ibrcom 247 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝐴 = (𝑃↑(𝑃 pCnt 𝐴)) → ∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛)))
7461, 73impbid 212 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝐴 ∥ (𝑃𝑛) ↔ 𝐴 = (𝑃↑(𝑃 pCnt 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057   class class class wbr 5093  (class class class)co 7352  0cc0 11013  cle 11154  cn 12132  0cn0 12388  cz 12475  cexp 13970  cdvds 16165  cprime 16584   pCnt cpc 16750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-fz 13410  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-prm 16585  df-pc 16751
This theorem is referenced by:  pcprmpw  16797  dvdsprmpweq  16798  pgpfi1  19509  pgpfi  19519  sylow2alem2  19532  lt6abl  19809  pgpfac1lem3a  19992  dvdsppwf1o  27124
  Copyright terms: Public domain W3C validator