MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mersenne Structured version   Visualization version   GIF version

Theorem mersenne 25811
Description: A Mersenne prime is a prime number of the form 2↑𝑃 − 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)

Proof of Theorem mersenne
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℤ)
2 2nn0 11902 . . . . . . 7 2 ∈ ℕ0
32numexp1 16403 . . . . . 6 (2↑1) = 2
4 df-2 11688 . . . . . 6 2 = (1 + 1)
53, 4eqtri 2821 . . . . 5 (2↑1) = (1 + 1)
6 prmuz2 16030 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
76adantl 485 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
8 eluz2gt1 12308 . . . . . . 7 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
97, 8syl 17 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
10 1red 10631 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℝ)
11 2re 11699 . . . . . . . . 9 2 ∈ ℝ
1211a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℝ)
13 2ne0 11729 . . . . . . . . 9 2 ≠ 0
1413a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ≠ 0)
1512, 14, 1reexpclzd 13606 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℝ)
1610, 10, 15ltaddsubd 11229 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 + 1) < (2↑𝑃) ↔ 1 < ((2↑𝑃) − 1)))
179, 16mpbird 260 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 + 1) < (2↑𝑃))
185, 17eqbrtrid 5065 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑1) < (2↑𝑃))
19 1zzd 12001 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℤ)
20 1lt2 11796 . . . . . 6 1 < 2
2120a1i 11 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 2)
2212, 19, 1, 21ltexp2d 13610 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 < 𝑃 ↔ (2↑1) < (2↑𝑃)))
2318, 22mpbird 260 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 𝑃)
24 eluz2b1 12307 . . 3 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
251, 23, 24sylanbrc 586 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
26 simpllr 775 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℙ)
27 prmnn 16008 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2826, 27syl 17 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℕ)
2928nncnd 11641 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℂ)
30 2nn 11698 . . . . . . . . . . 11 2 ∈ ℕ
31 elfzuz 12898 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ (ℤ‘2))
3231ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ (ℤ‘2))
33 eluz2nn 12272 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
3432, 33syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ)
3534nnnn0d 11943 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ0)
36 nnexpcl 13438 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
3730, 35, 36sylancr 590 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℕ)
3837nnzd 12074 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℤ)
39 peano2zm 12013 . . . . . . . . 9 ((2↑𝑘) ∈ ℤ → ((2↑𝑘) − 1) ∈ ℤ)
4038, 39syl 17 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℤ)
4140zred 12075 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℝ)
4241recnd 10658 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℂ)
43 0red 10633 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 ∈ ℝ)
44 1red 10631 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℝ)
45 0lt1 11151 . . . . . . . . . 10 0 < 1
4645a1i 11 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < 1)
47 eluz2gt1 12308 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
4832, 47syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 𝑘)
4911a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℝ)
50 1zzd 12001 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℤ)
51 elfzelz 12902 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ ℤ)
5251ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℤ)
5320a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 2)
5449, 50, 52, 53ltexp2d 13610 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
5548, 54mpbid 235 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑1) < (2↑𝑘))
565, 55eqbrtrrid 5066 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 + 1) < (2↑𝑘))
5737nnred 11640 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℝ)
5844, 44, 57ltaddsubd 11229 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 + 1) < (2↑𝑘) ↔ 1 < ((2↑𝑘) − 1)))
5956, 58mpbid 235 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < ((2↑𝑘) − 1))
6043, 44, 41, 46, 59lttrd 10790 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < ((2↑𝑘) − 1))
61 elnnz 11979 . . . . . . . 8 (((2↑𝑘) − 1) ∈ ℕ ↔ (((2↑𝑘) − 1) ∈ ℤ ∧ 0 < ((2↑𝑘) − 1)))
6240, 60, 61sylanbrc 586 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℕ)
6362nnne0d 11675 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ≠ 0)
6429, 42, 63divcan2d 11407 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) = ((2↑𝑃) − 1))
6564, 26eqeltrd 2890 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
66 eluz2b2 12309 . . . . . 6 (((2↑𝑘) − 1) ∈ (ℤ‘2) ↔ (((2↑𝑘) − 1) ∈ ℕ ∧ 1 < ((2↑𝑘) − 1)))
6762, 59, 66sylanbrc 586 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ (ℤ‘2))
6837nncnd 11641 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℂ)
69 ax-1cn 10584 . . . . . . . . . . . 12 1 ∈ ℂ
70 subeq0 10901 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7168, 69, 70sylancl 589 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7271necon3bid 3031 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) ≠ 0 ↔ (2↑𝑘) ≠ 1))
7363, 72mpbid 235 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ≠ 1)
74 simpr 488 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘𝑃)
75 eluz2nn 12272 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
7625, 75syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
7776ad2antrr 725 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℕ)
78 nndivdvds 15608 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
7977, 34, 78syl2anc 587 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
8074, 79mpbid 235 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ)
8180nnnn0d 11943 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ0)
8268, 73, 81geoser 15214 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
8315ad2antrr 725 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℝ)
8483recnd 10658 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℂ)
85 negsubdi2 10934 . . . . . . . . . . 11 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8684, 69, 85sylancl 589 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8777nncnd 11641 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℂ)
8834nncnd 11641 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℂ)
8934nnne0d 11675 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ≠ 0)
9087, 88, 89divcan2d 11407 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 · (𝑃 / 𝑘)) = 𝑃)
9190oveq2d 7151 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = (2↑𝑃))
9249recnd 10658 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℂ)
9392, 81, 35expmuld 13509 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9491, 93eqtr3d 2835 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9594oveq2d 7151 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 − (2↑𝑃)) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
9686, 95eqtrd 2833 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
97 negsubdi2 10934 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9868, 69, 97sylancl 589 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9996, 98oveq12d 7153 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
10029, 42, 63div2negd 11420 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
10182, 99, 1003eqtr2d 2839 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
102 fzfid 13336 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (0...((𝑃 / 𝑘) − 1)) ∈ Fin)
103 elfznn0 12995 . . . . . . . . 9 (𝑛 ∈ (0...((𝑃 / 𝑘) − 1)) → 𝑛 ∈ ℕ0)
104 zexpcl 13440 . . . . . . . . 9 (((2↑𝑘) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((2↑𝑘)↑𝑛) ∈ ℤ)
10538, 103, 104syl2an 598 . . . . . . . 8 (((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) ∧ 𝑛 ∈ (0...((𝑃 / 𝑘) − 1))) → ((2↑𝑘)↑𝑛) ∈ ℤ)
106102, 105fsumzcl 15084 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) ∈ ℤ)
107101, 106eqeltrrd 2891 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ)
10842mulid2d 10648 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) = ((2↑𝑘) − 1))
109 2z 12002 . . . . . . . . . . . . . 14 2 ∈ ℤ
110 elfzm11 12973 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
111109, 1, 110sylancr 590 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
112111biimpa 480 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃))
113112simp3d 1141 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → 𝑘 < 𝑃)
114113adantr 484 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 < 𝑃)
1151ad2antrr 725 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℤ)
11649, 52, 115, 53ltexp2d 13610 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 < 𝑃 ↔ (2↑𝑘) < (2↑𝑃)))
117114, 116mpbid 235 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) < (2↑𝑃))
11857, 83, 44, 117ltsub1dd 11241 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) < ((2↑𝑃) − 1))
119108, 118eqbrtrd 5052 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1))
12028nnred 11640 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℝ)
121 ltmuldiv 11502 . . . . . . . 8 ((1 ∈ ℝ ∧ ((2↑𝑃) − 1) ∈ ℝ ∧ (((2↑𝑘) − 1) ∈ ℝ ∧ 0 < ((2↑𝑘) − 1))) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
12244, 120, 41, 60, 121syl112anc 1371 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
123119, 122mpbid 235 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
124 eluz2b1 12307 . . . . . 6 ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2) ↔ ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ ∧ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
125107, 123, 124sylanbrc 586 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2))
126 nprm 16022 . . . . 5 ((((2↑𝑘) − 1) ∈ (ℤ‘2) ∧ (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2)) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12767, 125, 126syl2anc 587 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12865, 127pm2.65da 816 . . 3 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → ¬ 𝑘𝑃)
129128ralrimiva 3149 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃)
130 isprm3 16017 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃))
13125, 129, 130sylanbrc 586 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  cexp 13425  Σcsu 15034  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-prm 16006
This theorem is referenced by:  perfect1  25812  perfect  25815  lighneal  44129  perfectALTV  44241
  Copyright terms: Public domain W3C validator