MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mersenne Structured version   Visualization version   GIF version

Theorem mersenne 26280
Description: A Mersenne prime is a prime number of the form 2↑𝑃 − 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)

Proof of Theorem mersenne
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℤ)
2 2nn0 12180 . . . . . . 7 2 ∈ ℕ0
32numexp1 16706 . . . . . 6 (2↑1) = 2
4 df-2 11966 . . . . . 6 2 = (1 + 1)
53, 4eqtri 2766 . . . . 5 (2↑1) = (1 + 1)
6 prmuz2 16329 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
76adantl 481 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
8 eluz2gt1 12589 . . . . . . 7 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
97, 8syl 17 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
10 1red 10907 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℝ)
11 2re 11977 . . . . . . . . 9 2 ∈ ℝ
1211a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℝ)
13 2ne0 12007 . . . . . . . . 9 2 ≠ 0
1413a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ≠ 0)
1512, 14, 1reexpclzd 13892 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℝ)
1610, 10, 15ltaddsubd 11505 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 + 1) < (2↑𝑃) ↔ 1 < ((2↑𝑃) − 1)))
179, 16mpbird 256 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 + 1) < (2↑𝑃))
185, 17eqbrtrid 5105 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑1) < (2↑𝑃))
19 1zzd 12281 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℤ)
20 1lt2 12074 . . . . . 6 1 < 2
2120a1i 11 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 2)
2212, 19, 1, 21ltexp2d 13896 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 < 𝑃 ↔ (2↑1) < (2↑𝑃)))
2318, 22mpbird 256 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 𝑃)
24 eluz2b1 12588 . . 3 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
251, 23, 24sylanbrc 582 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
26 simpllr 772 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℙ)
27 prmnn 16307 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2826, 27syl 17 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℕ)
2928nncnd 11919 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℂ)
30 2nn 11976 . . . . . . . . . . 11 2 ∈ ℕ
31 elfzuz 13181 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ (ℤ‘2))
3231ad2antlr 723 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ (ℤ‘2))
33 eluz2nn 12553 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
3432, 33syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ)
3534nnnn0d 12223 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ0)
36 nnexpcl 13723 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
3730, 35, 36sylancr 586 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℕ)
3837nnzd 12354 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℤ)
39 peano2zm 12293 . . . . . . . . 9 ((2↑𝑘) ∈ ℤ → ((2↑𝑘) − 1) ∈ ℤ)
4038, 39syl 17 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℤ)
4140zred 12355 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℝ)
4241recnd 10934 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℂ)
43 0red 10909 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 ∈ ℝ)
44 1red 10907 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℝ)
45 0lt1 11427 . . . . . . . . . 10 0 < 1
4645a1i 11 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < 1)
47 eluz2gt1 12589 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
4832, 47syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 𝑘)
4911a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℝ)
50 1zzd 12281 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℤ)
51 elfzelz 13185 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ ℤ)
5251ad2antlr 723 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℤ)
5320a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 2)
5449, 50, 52, 53ltexp2d 13896 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
5548, 54mpbid 231 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑1) < (2↑𝑘))
565, 55eqbrtrrid 5106 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 + 1) < (2↑𝑘))
5737nnred 11918 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℝ)
5844, 44, 57ltaddsubd 11505 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 + 1) < (2↑𝑘) ↔ 1 < ((2↑𝑘) − 1)))
5956, 58mpbid 231 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < ((2↑𝑘) − 1))
6043, 44, 41, 46, 59lttrd 11066 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < ((2↑𝑘) − 1))
61 elnnz 12259 . . . . . . . 8 (((2↑𝑘) − 1) ∈ ℕ ↔ (((2↑𝑘) − 1) ∈ ℤ ∧ 0 < ((2↑𝑘) − 1)))
6240, 60, 61sylanbrc 582 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℕ)
6362nnne0d 11953 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ≠ 0)
6429, 42, 63divcan2d 11683 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) = ((2↑𝑃) − 1))
6564, 26eqeltrd 2839 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
66 eluz2b2 12590 . . . . . 6 (((2↑𝑘) − 1) ∈ (ℤ‘2) ↔ (((2↑𝑘) − 1) ∈ ℕ ∧ 1 < ((2↑𝑘) − 1)))
6762, 59, 66sylanbrc 582 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ (ℤ‘2))
6837nncnd 11919 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℂ)
69 ax-1cn 10860 . . . . . . . . . . . 12 1 ∈ ℂ
70 subeq0 11177 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7168, 69, 70sylancl 585 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7271necon3bid 2987 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) ≠ 0 ↔ (2↑𝑘) ≠ 1))
7363, 72mpbid 231 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ≠ 1)
74 simpr 484 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘𝑃)
75 eluz2nn 12553 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
7625, 75syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
7776ad2antrr 722 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℕ)
78 nndivdvds 15900 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
7977, 34, 78syl2anc 583 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
8074, 79mpbid 231 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ)
8180nnnn0d 12223 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ0)
8268, 73, 81geoser 15507 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
8315ad2antrr 722 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℝ)
8483recnd 10934 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℂ)
85 negsubdi2 11210 . . . . . . . . . . 11 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8684, 69, 85sylancl 585 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8777nncnd 11919 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℂ)
8834nncnd 11919 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℂ)
8934nnne0d 11953 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ≠ 0)
9087, 88, 89divcan2d 11683 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 · (𝑃 / 𝑘)) = 𝑃)
9190oveq2d 7271 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = (2↑𝑃))
9249recnd 10934 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℂ)
9392, 81, 35expmuld 13795 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9491, 93eqtr3d 2780 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9594oveq2d 7271 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 − (2↑𝑃)) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
9686, 95eqtrd 2778 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
97 negsubdi2 11210 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9868, 69, 97sylancl 585 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9996, 98oveq12d 7273 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
10029, 42, 63div2negd 11696 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
10182, 99, 1003eqtr2d 2784 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
102 fzfid 13621 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (0...((𝑃 / 𝑘) − 1)) ∈ Fin)
103 elfznn0 13278 . . . . . . . . 9 (𝑛 ∈ (0...((𝑃 / 𝑘) − 1)) → 𝑛 ∈ ℕ0)
104 zexpcl 13725 . . . . . . . . 9 (((2↑𝑘) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((2↑𝑘)↑𝑛) ∈ ℤ)
10538, 103, 104syl2an 595 . . . . . . . 8 (((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) ∧ 𝑛 ∈ (0...((𝑃 / 𝑘) − 1))) → ((2↑𝑘)↑𝑛) ∈ ℤ)
106102, 105fsumzcl 15375 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) ∈ ℤ)
107101, 106eqeltrrd 2840 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ)
10842mulid2d 10924 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) = ((2↑𝑘) − 1))
109 2z 12282 . . . . . . . . . . . . . 14 2 ∈ ℤ
110 elfzm11 13256 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
111109, 1, 110sylancr 586 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
112111biimpa 476 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃))
113112simp3d 1142 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → 𝑘 < 𝑃)
114113adantr 480 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 < 𝑃)
1151ad2antrr 722 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℤ)
11649, 52, 115, 53ltexp2d 13896 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 < 𝑃 ↔ (2↑𝑘) < (2↑𝑃)))
117114, 116mpbid 231 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) < (2↑𝑃))
11857, 83, 44, 117ltsub1dd 11517 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) < ((2↑𝑃) − 1))
119108, 118eqbrtrd 5092 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1))
12028nnred 11918 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℝ)
121 ltmuldiv 11778 . . . . . . . 8 ((1 ∈ ℝ ∧ ((2↑𝑃) − 1) ∈ ℝ ∧ (((2↑𝑘) − 1) ∈ ℝ ∧ 0 < ((2↑𝑘) − 1))) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
12244, 120, 41, 60, 121syl112anc 1372 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
123119, 122mpbid 231 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
124 eluz2b1 12588 . . . . . 6 ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2) ↔ ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ ∧ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
125107, 123, 124sylanbrc 582 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2))
126 nprm 16321 . . . . 5 ((((2↑𝑘) − 1) ∈ (ℤ‘2) ∧ (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2)) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12767, 125, 126syl2anc 583 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12865, 127pm2.65da 813 . . 3 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → ¬ 𝑘𝑃)
129128ralrimiva 3107 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃)
130 isprm3 16316 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃))
13125, 129, 130sylanbrc 582 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  cexp 13710  Σcsu 15325  cdvds 15891  cprime 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-prm 16305
This theorem is referenced by:  perfect1  26281  perfect  26284  lighneal  44951  perfectALTV  45063
  Copyright terms: Public domain W3C validator