MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mersenne Structured version   Visualization version   GIF version

Theorem mersenne 25814
Description: A Mersenne prime is a prime number of the form 2↑𝑃 − 1. This theorem shows that the 𝑃 in this expression is necessarily also prime. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
mersenne ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)

Proof of Theorem mersenne
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℤ)
2 2nn0 11911 . . . . . . 7 2 ∈ ℕ0
32numexp1 16411 . . . . . 6 (2↑1) = 2
4 df-2 11697 . . . . . 6 2 = (1 + 1)
53, 4eqtri 2847 . . . . 5 (2↑1) = (1 + 1)
6 prmuz2 16038 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
76adantl 485 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
8 eluz2gt1 12317 . . . . . . 7 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
97, 8syl 17 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
10 1red 10640 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℝ)
11 2re 11708 . . . . . . . . 9 2 ∈ ℝ
1211a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℝ)
13 2ne0 11738 . . . . . . . . 9 2 ≠ 0
1413a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ≠ 0)
1512, 14, 1reexpclzd 13615 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℝ)
1610, 10, 15ltaddsubd 11238 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 + 1) < (2↑𝑃) ↔ 1 < ((2↑𝑃) − 1)))
179, 16mpbird 260 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 + 1) < (2↑𝑃))
185, 17eqbrtrid 5087 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑1) < (2↑𝑃))
19 1zzd 12010 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℤ)
20 1lt2 11805 . . . . . 6 1 < 2
2120a1i 11 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 2)
2212, 19, 1, 21ltexp2d 13619 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 < 𝑃 ↔ (2↑1) < (2↑𝑃)))
2318, 22mpbird 260 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < 𝑃)
24 eluz2b1 12316 . . 3 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
251, 23, 24sylanbrc 586 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
26 simpllr 775 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℙ)
27 prmnn 16016 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2826, 27syl 17 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℕ)
2928nncnd 11650 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℂ)
30 2nn 11707 . . . . . . . . . . 11 2 ∈ ℕ
31 elfzuz 12907 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ (ℤ‘2))
3231ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ (ℤ‘2))
33 eluz2nn 12281 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ)
3432, 33syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ)
3534nnnn0d 11952 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℕ0)
36 nnexpcl 13447 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
3730, 35, 36sylancr 590 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℕ)
3837nnzd 12083 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℤ)
39 peano2zm 12022 . . . . . . . . 9 ((2↑𝑘) ∈ ℤ → ((2↑𝑘) − 1) ∈ ℤ)
4038, 39syl 17 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℤ)
4140zred 12084 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℝ)
4241recnd 10667 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℂ)
43 0red 10642 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 ∈ ℝ)
44 1red 10640 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℝ)
45 0lt1 11160 . . . . . . . . . 10 0 < 1
4645a1i 11 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < 1)
47 eluz2gt1 12317 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
4832, 47syl 17 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 𝑘)
4911a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℝ)
50 1zzd 12010 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 ∈ ℤ)
51 elfzelz 12911 . . . . . . . . . . . . . 14 (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ ℤ)
5251ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℤ)
5320a1i 11 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < 2)
5449, 50, 52, 53ltexp2d 13619 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
5548, 54mpbid 235 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑1) < (2↑𝑘))
565, 55eqbrtrrid 5088 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 + 1) < (2↑𝑘))
5737nnred 11649 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℝ)
5844, 44, 57ltaddsubd 11238 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 + 1) < (2↑𝑘) ↔ 1 < ((2↑𝑘) − 1)))
5956, 58mpbid 235 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < ((2↑𝑘) − 1))
6043, 44, 41, 46, 59lttrd 10799 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 0 < ((2↑𝑘) − 1))
61 elnnz 11988 . . . . . . . 8 (((2↑𝑘) − 1) ∈ ℕ ↔ (((2↑𝑘) − 1) ∈ ℤ ∧ 0 < ((2↑𝑘) − 1)))
6240, 60, 61sylanbrc 586 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ ℕ)
6362nnne0d 11684 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ≠ 0)
6429, 42, 63divcan2d 11416 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) = ((2↑𝑃) − 1))
6564, 26eqeltrd 2916 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
66 eluz2b2 12318 . . . . . 6 (((2↑𝑘) − 1) ∈ (ℤ‘2) ↔ (((2↑𝑘) − 1) ∈ ℕ ∧ 1 < ((2↑𝑘) − 1)))
6762, 59, 66sylanbrc 586 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) ∈ (ℤ‘2))
6837nncnd 11650 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ∈ ℂ)
69 ax-1cn 10593 . . . . . . . . . . . 12 1 ∈ ℂ
70 subeq0 10910 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7168, 69, 70sylancl 589 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1))
7271necon3bid 3058 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑘) − 1) ≠ 0 ↔ (2↑𝑘) ≠ 1))
7363, 72mpbid 235 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) ≠ 1)
74 simpr 488 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘𝑃)
75 eluz2nn 12281 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
7625, 75syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
7776ad2antrr 725 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℕ)
78 nndivdvds 15616 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
7977, 34, 78syl2anc 587 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ))
8074, 79mpbid 235 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ)
8180nnnn0d 11952 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑃 / 𝑘) ∈ ℕ0)
8268, 73, 81geoser 15222 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
8315ad2antrr 725 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℝ)
8483recnd 10667 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) ∈ ℂ)
85 negsubdi2 10943 . . . . . . . . . . 11 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8684, 69, 85sylancl 589 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − (2↑𝑃)))
8777nncnd 11650 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℂ)
8834nncnd 11650 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ∈ ℂ)
8934nnne0d 11684 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 ≠ 0)
9087, 88, 89divcan2d 11416 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 · (𝑃 / 𝑘)) = 𝑃)
9190oveq2d 7165 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = (2↑𝑃))
9249recnd 10667 . . . . . . . . . . . . 13 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 2 ∈ ℂ)
9392, 81, 35expmuld 13518 . . . . . . . . . . . 12 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9491, 93eqtr3d 2861 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑃) = ((2↑𝑘)↑(𝑃 / 𝑘)))
9594oveq2d 7165 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 − (2↑𝑃)) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
9686, 95eqtrd 2859 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑃) − 1) = (1 − ((2↑𝑘)↑(𝑃 / 𝑘))))
97 negsubdi2 10943 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9868, 69, 97sylancl 589 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → -((2↑𝑘) − 1) = (1 − (2↑𝑘)))
9996, 98oveq12d 7167 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘))))
10029, 42, 63div2negd 11429 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
10182, 99, 1003eqtr2d 2865 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
102 fzfid 13345 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (0...((𝑃 / 𝑘) − 1)) ∈ Fin)
103 elfznn0 13004 . . . . . . . . 9 (𝑛 ∈ (0...((𝑃 / 𝑘) − 1)) → 𝑛 ∈ ℕ0)
104 zexpcl 13449 . . . . . . . . 9 (((2↑𝑘) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((2↑𝑘)↑𝑛) ∈ ℤ)
10538, 103, 104syl2an 598 . . . . . . . 8 (((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) ∧ 𝑛 ∈ (0...((𝑃 / 𝑘) − 1))) → ((2↑𝑘)↑𝑛) ∈ ℤ)
106102, 105fsumzcl 15092 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) ∈ ℤ)
107101, 106eqeltrrd 2917 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ)
10842mulid2d 10657 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) = ((2↑𝑘) − 1))
109 2z 12011 . . . . . . . . . . . . . 14 2 ∈ ℤ
110 elfzm11 12982 . . . . . . . . . . . . . 14 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
111109, 1, 110sylancr 590 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑘 ∈ (2...(𝑃 − 1)) ↔ (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃)))
112111biimpa 480 . . . . . . . . . . . 12 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → (𝑘 ∈ ℤ ∧ 2 ≤ 𝑘𝑘 < 𝑃))
113112simp3d 1141 . . . . . . . . . . 11 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → 𝑘 < 𝑃)
114113adantr 484 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑘 < 𝑃)
1151ad2antrr 725 . . . . . . . . . . 11 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 𝑃 ∈ ℤ)
11649, 52, 115, 53ltexp2d 13619 . . . . . . . . . 10 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (𝑘 < 𝑃 ↔ (2↑𝑘) < (2↑𝑃)))
117114, 116mpbid 235 . . . . . . . . 9 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (2↑𝑘) < (2↑𝑃))
11857, 83, 44, 117ltsub1dd 11250 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑘) − 1) < ((2↑𝑃) − 1))
119108, 118eqbrtrd 5074 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1))
12028nnred 11649 . . . . . . . 8 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((2↑𝑃) − 1) ∈ ℝ)
121 ltmuldiv 11511 . . . . . . . 8 ((1 ∈ ℝ ∧ ((2↑𝑃) − 1) ∈ ℝ ∧ (((2↑𝑘) − 1) ∈ ℝ ∧ 0 < ((2↑𝑘) − 1))) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
12244, 120, 41, 60, 121syl112anc 1371 . . . . . . 7 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ((1 · ((2↑𝑘) − 1)) < ((2↑𝑃) − 1) ↔ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
123119, 122mpbid 235 . . . . . 6 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1)))
124 eluz2b1 12316 . . . . . 6 ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2) ↔ ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ ∧ 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))))
125107, 123, 124sylanbrc 586 . . . . 5 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2))
126 nprm 16030 . . . . 5 ((((2↑𝑘) − 1) ∈ (ℤ‘2) ∧ (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ (ℤ‘2)) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12767, 125, 126syl2anc 587 . . . 4 ((((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘𝑃) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈ ℙ)
12865, 127pm2.65da 816 . . 3 (((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) → ¬ 𝑘𝑃)
129128ralrimiva 3177 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃)
130 isprm3 16025 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘𝑃))
13125, 129, 130sylanbrc 586 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133   class class class wbr 5052  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540   < clt 10673  cle 10674  cmin 10868  -cneg 10869   / cdiv 11295  cn 11634  2c2 11689  0cn0 11894  cz 11978  cuz 12240  ...cfz 12894  cexp 13434  Σcsu 15042  cdvds 15607  cprime 16013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-dvds 15608  df-prm 16014
This theorem is referenced by:  perfect1  25815  perfect  25818  lighneal  44055  perfectALTV  44167
  Copyright terms: Public domain W3C validator