Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . 3
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ ℤ) |
2 | | 2nn0 12250 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
3 | 2 | numexp1 16778 |
. . . . . 6
⊢
(2↑1) = 2 |
4 | | df-2 12036 |
. . . . . 6
⊢ 2 = (1 +
1) |
5 | 3, 4 | eqtri 2766 |
. . . . 5
⊢
(2↑1) = (1 + 1) |
6 | | prmuz2 16401 |
. . . . . . . 8
⊢
(((2↑𝑃) −
1) ∈ ℙ → ((2↑𝑃) − 1) ∈
(ℤ≥‘2)) |
7 | 6 | adantl 482 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → ((2↑𝑃) − 1) ∈
(ℤ≥‘2)) |
8 | | eluz2gt1 12660 |
. . . . . . 7
⊢
(((2↑𝑃) −
1) ∈ (ℤ≥‘2) → 1 < ((2↑𝑃) − 1)) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 < ((2↑𝑃) − 1)) |
10 | | 1red 10976 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 ∈ ℝ) |
11 | | 2re 12047 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
12 | 11 | a1i 11 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 2 ∈ ℝ) |
13 | | 2ne0 12077 |
. . . . . . . . 9
⊢ 2 ≠
0 |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 2 ≠ 0) |
15 | 12, 14, 1 | reexpclzd 13964 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (2↑𝑃) ∈ ℝ) |
16 | 10, 10, 15 | ltaddsubd 11575 |
. . . . . 6
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → ((1 + 1) < (2↑𝑃) ↔ 1 < ((2↑𝑃) − 1))) |
17 | 9, 16 | mpbird 256 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (1 + 1) < (2↑𝑃)) |
18 | 5, 17 | eqbrtrid 5109 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (2↑1) < (2↑𝑃)) |
19 | | 1zzd 12351 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 ∈ ℤ) |
20 | | 1lt2 12144 |
. . . . . 6
⊢ 1 <
2 |
21 | 20 | a1i 11 |
. . . . 5
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 < 2) |
22 | 12, 19, 1, 21 | ltexp2d 13968 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (1 < 𝑃 ↔ (2↑1) < (2↑𝑃))) |
23 | 18, 22 | mpbird 256 |
. . 3
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 1 < 𝑃) |
24 | | eluz2b1 12659 |
. . 3
⊢ (𝑃 ∈
(ℤ≥‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃)) |
25 | 1, 23, 24 | sylanbrc 583 |
. 2
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ (ℤ≥‘2)) |
26 | | simpllr 773 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℙ) |
27 | | prmnn 16379 |
. . . . . . . 8
⊢
(((2↑𝑃) −
1) ∈ ℙ → ((2↑𝑃) − 1) ∈
ℕ) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℕ) |
29 | 28 | nncnd 11989 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℂ) |
30 | | 2nn 12046 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ |
31 | | elfzuz 13252 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈
(ℤ≥‘2)) |
32 | 31 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈
(ℤ≥‘2)) |
33 | | eluz2nn 12624 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘2) → 𝑘 ∈ ℕ) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℕ) |
35 | 34 | nnnn0d 12293 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℕ0) |
36 | | nnexpcl 13795 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
37 | 30, 35, 36 | sylancr 587 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℕ) |
38 | 37 | nnzd 12425 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℤ) |
39 | | peano2zm 12363 |
. . . . . . . . 9
⊢
((2↑𝑘) ∈
ℤ → ((2↑𝑘)
− 1) ∈ ℤ) |
40 | 38, 39 | syl 17 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℤ) |
41 | 40 | zred 12426 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℝ) |
42 | 41 | recnd 11003 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℂ) |
43 | | 0red 10978 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 0 ∈
ℝ) |
44 | | 1red 10976 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 ∈
ℝ) |
45 | | 0lt1 11497 |
. . . . . . . . . 10
⊢ 0 <
1 |
46 | 45 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 0 <
1) |
47 | | eluz2gt1 12660 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘2) → 1 < 𝑘) |
48 | 32, 47 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 < 𝑘) |
49 | 11 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 2 ∈
ℝ) |
50 | | 1zzd 12351 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 ∈
ℤ) |
51 | | elfzelz 13256 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (2...(𝑃 − 1)) → 𝑘 ∈ ℤ) |
52 | 51 | ad2antlr 724 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℤ) |
53 | 20 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 <
2) |
54 | 49, 50, 52, 53 | ltexp2d 13968 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 < 𝑘 ↔ (2↑1) <
(2↑𝑘))) |
55 | 48, 54 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑1) <
(2↑𝑘)) |
56 | 5, 55 | eqbrtrrid 5110 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 + 1) <
(2↑𝑘)) |
57 | 37 | nnred 11988 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℝ) |
58 | 44, 44, 57 | ltaddsubd 11575 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((1 + 1) <
(2↑𝑘) ↔ 1 <
((2↑𝑘) −
1))) |
59 | 56, 58 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 < ((2↑𝑘) − 1)) |
60 | 43, 44, 41, 46, 59 | lttrd 11136 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 0 < ((2↑𝑘) − 1)) |
61 | | elnnz 12329 |
. . . . . . . 8
⊢
(((2↑𝑘) −
1) ∈ ℕ ↔ (((2↑𝑘) − 1) ∈ ℤ ∧ 0 <
((2↑𝑘) −
1))) |
62 | 40, 60, 61 | sylanbrc 583 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
ℕ) |
63 | 62 | nnne0d 12023 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ≠
0) |
64 | 29, 42, 63 | divcan2d 11753 |
. . . . 5
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑘) − 1) ·
(((2↑𝑃) − 1) /
((2↑𝑘) − 1))) =
((2↑𝑃) −
1)) |
65 | 64, 26 | eqeltrd 2839 |
. . . 4
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑘) − 1) ·
(((2↑𝑃) − 1) /
((2↑𝑘) − 1)))
∈ ℙ) |
66 | | eluz2b2 12661 |
. . . . . 6
⊢
(((2↑𝑘) −
1) ∈ (ℤ≥‘2) ↔ (((2↑𝑘) − 1) ∈ ℕ ∧ 1 <
((2↑𝑘) −
1))) |
67 | 62, 59, 66 | sylanbrc 583 |
. . . . 5
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) ∈
(ℤ≥‘2)) |
68 | 37 | nncnd 11989 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ∈
ℂ) |
69 | | ax-1cn 10929 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
70 | | subeq0 11247 |
. . . . . . . . . . . 12
⊢
(((2↑𝑘) ∈
ℂ ∧ 1 ∈ ℂ) → (((2↑𝑘) − 1) = 0 ↔ (2↑𝑘) = 1)) |
71 | 68, 69, 70 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑘) − 1) = 0 ↔
(2↑𝑘) =
1)) |
72 | 71 | necon3bid 2988 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑘) − 1) ≠ 0 ↔
(2↑𝑘) ≠
1)) |
73 | 63, 72 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) ≠ 1) |
74 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∥ 𝑃) |
75 | | eluz2nn 12624 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
76 | 25, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ ℕ) |
77 | 76 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑃 ∈ ℕ) |
78 | | nndivdvds 15972 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘 ∥ 𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ)) |
79 | 77, 34, 78 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑘 ∥ 𝑃 ↔ (𝑃 / 𝑘) ∈ ℕ)) |
80 | 74, 79 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑃 / 𝑘) ∈ ℕ) |
81 | 80 | nnnn0d 12293 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑃 / 𝑘) ∈
ℕ0) |
82 | 68, 73, 81 | geoser 15579 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = ((1 − ((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘)))) |
83 | 15 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑃) ∈
ℝ) |
84 | 83 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑃) ∈
ℂ) |
85 | | negsubdi2 11280 |
. . . . . . . . . . 11
⊢
(((2↑𝑃) ∈
ℂ ∧ 1 ∈ ℂ) → -((2↑𝑃) − 1) = (1 − (2↑𝑃))) |
86 | 84, 69, 85 | sylancl 586 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → -((2↑𝑃) − 1) = (1 −
(2↑𝑃))) |
87 | 77 | nncnd 11989 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑃 ∈ ℂ) |
88 | 34 | nncnd 11989 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ∈ ℂ) |
89 | 34 | nnne0d 12023 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 ≠ 0) |
90 | 87, 88, 89 | divcan2d 11753 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑘 · (𝑃 / 𝑘)) = 𝑃) |
91 | 90 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = (2↑𝑃)) |
92 | 49 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 2 ∈
ℂ) |
93 | 92, 81, 35 | expmuld 13867 |
. . . . . . . . . . . 12
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑(𝑘 · (𝑃 / 𝑘))) = ((2↑𝑘)↑(𝑃 / 𝑘))) |
94 | 91, 93 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑃) = ((2↑𝑘)↑(𝑃 / 𝑘))) |
95 | 94 | oveq2d 7291 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 −
(2↑𝑃)) = (1 −
((2↑𝑘)↑(𝑃 / 𝑘)))) |
96 | 86, 95 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → -((2↑𝑃) − 1) = (1 −
((2↑𝑘)↑(𝑃 / 𝑘)))) |
97 | | negsubdi2 11280 |
. . . . . . . . . 10
⊢
(((2↑𝑘) ∈
ℂ ∧ 1 ∈ ℂ) → -((2↑𝑘) − 1) = (1 − (2↑𝑘))) |
98 | 68, 69, 97 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → -((2↑𝑘) − 1) = (1 −
(2↑𝑘))) |
99 | 96, 98 | oveq12d 7293 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = ((1 −
((2↑𝑘)↑(𝑃 / 𝑘))) / (1 − (2↑𝑘)))) |
100 | 29, 42, 63 | div2negd 11766 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (-((2↑𝑃) − 1) / -((2↑𝑘) − 1)) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) |
101 | 82, 99, 100 | 3eqtr2d 2784 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) = (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) |
102 | | fzfid 13693 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (0...((𝑃 / 𝑘) − 1)) ∈ Fin) |
103 | | elfznn0 13349 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...((𝑃 / 𝑘) − 1)) → 𝑛 ∈ ℕ0) |
104 | | zexpcl 13797 |
. . . . . . . . 9
⊢
(((2↑𝑘) ∈
ℤ ∧ 𝑛 ∈
ℕ0) → ((2↑𝑘)↑𝑛) ∈ ℤ) |
105 | 38, 103, 104 | syl2an 596 |
. . . . . . . 8
⊢
(((((𝑃 ∈
ℤ ∧ ((2↑𝑃)
− 1) ∈ ℙ) ∧ 𝑘 ∈ (2...(𝑃 − 1))) ∧ 𝑘 ∥ 𝑃) ∧ 𝑛 ∈ (0...((𝑃 / 𝑘) − 1))) → ((2↑𝑘)↑𝑛) ∈ ℤ) |
106 | 102, 105 | fsumzcl 15447 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → Σ𝑛 ∈ (0...((𝑃 / 𝑘) − 1))((2↑𝑘)↑𝑛) ∈ ℤ) |
107 | 101, 106 | eqeltrrd 2840 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈
ℤ) |
108 | 42 | mulid2d 10993 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 ·
((2↑𝑘) − 1)) =
((2↑𝑘) −
1)) |
109 | | 2z 12352 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℤ |
110 | | elfzm11 13327 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ 𝑃
∈ ℤ) → (𝑘
∈ (2...(𝑃 − 1))
↔ (𝑘 ∈ ℤ
∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃))) |
111 | 109, 1, 110 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → (𝑘
∈ (2...(𝑃 − 1))
↔ (𝑘 ∈ ℤ
∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃))) |
112 | 111 | biimpa 477 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
→ (𝑘 ∈ ℤ
∧ 2 ≤ 𝑘 ∧ 𝑘 < 𝑃)) |
113 | 112 | simp3d 1143 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
→ 𝑘 < 𝑃) |
114 | 113 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑘 < 𝑃) |
115 | 1 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 𝑃 ∈ ℤ) |
116 | 49, 52, 115, 53 | ltexp2d 13968 |
. . . . . . . . . 10
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (𝑘 < 𝑃 ↔ (2↑𝑘) < (2↑𝑃))) |
117 | 114, 116 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (2↑𝑘) < (2↑𝑃)) |
118 | 57, 83, 44, 117 | ltsub1dd 11587 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑘) − 1) < ((2↑𝑃) − 1)) |
119 | 108, 118 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (1 ·
((2↑𝑘) − 1))
< ((2↑𝑃) −
1)) |
120 | 28 | nnred 11988 |
. . . . . . . 8
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((2↑𝑃) − 1) ∈
ℝ) |
121 | | ltmuldiv 11848 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ ((2↑𝑃) − 1) ∈ ℝ ∧
(((2↑𝑘) − 1)
∈ ℝ ∧ 0 < ((2↑𝑘) − 1))) → ((1 ·
((2↑𝑘) − 1))
< ((2↑𝑃) − 1)
↔ 1 < (((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)))) |
122 | 44, 120, 41, 60, 121 | syl112anc 1373 |
. . . . . . 7
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ((1 ·
((2↑𝑘) − 1))
< ((2↑𝑃) − 1)
↔ 1 < (((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)))) |
123 | 119, 122 | mpbid 231 |
. . . . . 6
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → 1 < (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) |
124 | | eluz2b1 12659 |
. . . . . 6
⊢
((((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)) ∈ (ℤ≥‘2) ↔ ((((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈ ℤ
∧ 1 < (((2↑𝑃)
− 1) / ((2↑𝑘)
− 1)))) |
125 | 107, 123,
124 | sylanbrc 583 |
. . . . 5
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈
(ℤ≥‘2)) |
126 | | nprm 16393 |
. . . . 5
⊢
((((2↑𝑘)
− 1) ∈ (ℤ≥‘2) ∧ (((2↑𝑃) − 1) / ((2↑𝑘) − 1)) ∈
(ℤ≥‘2)) → ¬ (((2↑𝑘) − 1) · (((2↑𝑃) − 1) / ((2↑𝑘) − 1))) ∈
ℙ) |
127 | 67, 125, 126 | syl2anc 584 |
. . . 4
⊢ ((((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
∧ 𝑘 ∥ 𝑃) → ¬ (((2↑𝑘) − 1) ·
(((2↑𝑃) − 1) /
((2↑𝑘) − 1)))
∈ ℙ) |
128 | 65, 127 | pm2.65da 814 |
. . 3
⊢ (((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) ∧ 𝑘
∈ (2...(𝑃 − 1)))
→ ¬ 𝑘 ∥
𝑃) |
129 | 128 | ralrimiva 3103 |
. 2
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘 ∥ 𝑃) |
130 | | isprm3 16388 |
. 2
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑘 ∈ (2...(𝑃 − 1)) ¬ 𝑘 ∥ 𝑃)) |
131 | 25, 129, 130 | sylanbrc 583 |
1
⊢ ((𝑃 ∈ ℤ ∧
((2↑𝑃) − 1)
∈ ℙ) → 𝑃
∈ ℙ) |