![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sgm2ppw | Structured version Visualization version GIF version |
Description: The sum of the divisors of 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
1sgm2ppw | ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11168 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 2prm 16629 | . . 3 ⊢ 2 ∈ ℙ | |
3 | nnm1nn0 12513 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
4 | sgmppw 26700 | . . 3 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℙ ∧ (𝑁 − 1) ∈ ℕ0) → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) | |
5 | 1, 2, 3, 4 | mp3an12i 1466 | . 2 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) |
6 | 2cn 12287 | . . . . . 6 ⊢ 2 ∈ ℂ | |
7 | cxp1 26179 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑𝑐1) = 2) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (2↑𝑐1) = 2) |
9 | 8 | oveq1d 7424 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → ((2↑𝑐1)↑𝑘) = (2↑𝑘)) |
10 | 9 | sumeq2i 15645 | . . 3 ⊢ Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) |
11 | 6 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) |
12 | 1ne2 12420 | . . . . . 6 ⊢ 1 ≠ 2 | |
13 | 12 | necomi 2996 | . . . . 5 ⊢ 2 ≠ 1 |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
15 | nnnn0 12479 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
16 | 11, 14, 15 | geoser 15813 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
17 | 10, 16 | eqtrid 2785 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
18 | 2nn 12285 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
19 | nnexpcl 14040 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ) | |
20 | 18, 15, 19 | sylancr 588 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
21 | 20 | nncnd 12228 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ) |
22 | subcl 11459 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑁) − 1) ∈ ℂ) | |
23 | 21, 1, 22 | sylancl 587 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℂ) |
24 | 1 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) |
25 | ax-1ne0 11179 | . . . . 5 ⊢ 1 ≠ 0 | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ≠ 0) |
27 | 23, 24, 26 | div2negd 12005 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
28 | negsubdi2 11519 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) | |
29 | 21, 1, 28 | sylancl 587 | . . . 4 ⊢ (𝑁 ∈ ℕ → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
30 | df-neg 11447 | . . . . . 6 ⊢ -1 = (0 − 1) | |
31 | 0cn 11206 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
32 | pnpcan 11499 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + 0) − (1 + 1)) = (0 − 1)) | |
33 | 1, 31, 1, 32 | mp3an 1462 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (0 − 1) |
34 | 1p0e1 12336 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
35 | 1p1e2 12337 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
36 | 34, 35 | oveq12i 7421 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (1 − 2) |
37 | 30, 33, 36 | 3eqtr2i 2767 | . . . . 5 ⊢ -1 = (1 − 2) |
38 | 37 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → -1 = (1 − 2)) |
39 | 29, 38 | oveq12d 7427 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
40 | 23 | div1d 11982 | . . 3 ⊢ (𝑁 ∈ ℕ → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
41 | 27, 39, 40 | 3eqtr3d 2781 | . 2 ⊢ (𝑁 ∈ ℕ → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
42 | 5, 17, 41 | 3eqtrd 2777 | 1 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 (class class class)co 7409 ℂcc 11108 0cc0 11110 1c1 11111 + caddc 11113 − cmin 11444 -cneg 11445 / cdiv 11871 ℕcn 12212 2c2 12267 ℕ0cn0 12472 ...cfz 13484 ↑cexp 14027 Σcsu 15632 ℙcprime 16608 ↑𝑐ccxp 26064 σ csgm 26600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-fi 9406 df-sup 9437 df-inf 9438 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-q 12933 df-rp 12975 df-xneg 13092 df-xadd 13093 df-xmul 13094 df-ioo 13328 df-ioc 13329 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-exp 14028 df-fac 14234 df-bc 14263 df-hash 14291 df-shft 15014 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-limsup 15415 df-clim 15432 df-rlim 15433 df-sum 15633 df-ef 16011 df-sin 16013 df-cos 16014 df-pi 16016 df-dvds 16198 df-gcd 16436 df-prm 16609 df-pc 16770 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17368 df-topn 17369 df-0g 17387 df-gsum 17388 df-topgen 17389 df-pt 17390 df-prds 17393 df-xrs 17448 df-qtop 17453 df-imas 17454 df-xps 17456 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-psmet 20936 df-xmet 20937 df-met 20938 df-bl 20939 df-mopn 20940 df-fbas 20941 df-fg 20942 df-cnfld 20945 df-top 22396 df-topon 22413 df-topsp 22435 df-bases 22449 df-cld 22523 df-ntr 22524 df-cls 22525 df-nei 22602 df-lp 22640 df-perf 22641 df-cn 22731 df-cnp 22732 df-haus 22819 df-tx 23066 df-hmeo 23259 df-fil 23350 df-fm 23442 df-flim 23443 df-flf 23444 df-xms 23826 df-ms 23827 df-tms 23828 df-cncf 24394 df-limc 25383 df-dv 25384 df-log 26065 df-cxp 26066 df-sgm 26606 |
This theorem is referenced by: perfect1 26731 perfectlem1 26732 perfectlem2 26733 perfectALTVlem1 46389 perfectALTVlem2 46390 |
Copyright terms: Public domain | W3C validator |