Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1sgm2ppw | Structured version Visualization version GIF version |
Description: The sum of the divisors of 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
1sgm2ppw | ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10638 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 2prm 16093 | . . 3 ⊢ 2 ∈ ℙ | |
3 | nnm1nn0 11980 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
4 | sgmppw 25885 | . . 3 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℙ ∧ (𝑁 − 1) ∈ ℕ0) → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) | |
5 | 1, 2, 3, 4 | mp3an12i 1462 | . 2 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) |
6 | 2cn 11754 | . . . . . 6 ⊢ 2 ∈ ℂ | |
7 | cxp1 25366 | . . . . . 6 ⊢ (2 ∈ ℂ → (2↑𝑐1) = 2) | |
8 | 6, 7 | mp1i 13 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (2↑𝑐1) = 2) |
9 | 8 | oveq1d 7170 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → ((2↑𝑐1)↑𝑘) = (2↑𝑘)) |
10 | 9 | sumeq2i 15109 | . . 3 ⊢ Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) |
11 | 6 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) |
12 | 1ne2 11887 | . . . . . 6 ⊢ 1 ≠ 2 | |
13 | 12 | necomi 3005 | . . . . 5 ⊢ 2 ≠ 1 |
14 | 13 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 ≠ 1) |
15 | nnnn0 11946 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
16 | 11, 14, 15 | geoser 15275 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
17 | 10, 16 | syl5eq 2805 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
18 | 2nn 11752 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
19 | nnexpcl 13497 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ) | |
20 | 18, 15, 19 | sylancr 590 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
21 | 20 | nncnd 11695 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ) |
22 | subcl 10928 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑁) − 1) ∈ ℂ) | |
23 | 21, 1, 22 | sylancl 589 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℂ) |
24 | 1 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) |
25 | ax-1ne0 10649 | . . . . 5 ⊢ 1 ≠ 0 | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ≠ 0) |
27 | 23, 24, 26 | div2negd 11474 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
28 | negsubdi2 10988 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) | |
29 | 21, 1, 28 | sylancl 589 | . . . 4 ⊢ (𝑁 ∈ ℕ → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
30 | df-neg 10916 | . . . . . 6 ⊢ -1 = (0 − 1) | |
31 | 0cn 10676 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
32 | pnpcan 10968 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + 0) − (1 + 1)) = (0 − 1)) | |
33 | 1, 31, 1, 32 | mp3an 1458 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (0 − 1) |
34 | 1p0e1 11803 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
35 | 1p1e2 11804 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
36 | 34, 35 | oveq12i 7167 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (1 − 2) |
37 | 30, 33, 36 | 3eqtr2i 2787 | . . . . 5 ⊢ -1 = (1 − 2) |
38 | 37 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ → -1 = (1 − 2)) |
39 | 29, 38 | oveq12d 7173 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
40 | 23 | div1d 11451 | . . 3 ⊢ (𝑁 ∈ ℕ → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
41 | 27, 39, 40 | 3eqtr3d 2801 | . 2 ⊢ (𝑁 ∈ ℕ → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
42 | 5, 17, 41 | 3eqtrd 2797 | 1 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 (class class class)co 7155 ℂcc 10578 0cc0 10580 1c1 10581 + caddc 10583 − cmin 10913 -cneg 10914 / cdiv 11340 ℕcn 11679 2c2 11734 ℕ0cn0 11939 ...cfz 12944 ↑cexp 13484 Σcsu 15095 ℙcprime 16072 ↑𝑐ccxp 25251 σ csgm 25785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 ax-addf 10659 ax-mulf 10660 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-2o 8118 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-fi 8913 df-sup 8944 df-inf 8945 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-ioo 12788 df-ioc 12789 df-ico 12790 df-icc 12791 df-fz 12945 df-fzo 13088 df-fl 13216 df-mod 13292 df-seq 13424 df-exp 13485 df-fac 13689 df-bc 13718 df-hash 13746 df-shft 14479 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-limsup 14881 df-clim 14898 df-rlim 14899 df-sum 15096 df-ef 15474 df-sin 15476 df-cos 15477 df-pi 15479 df-dvds 15661 df-gcd 15899 df-prm 16073 df-pc 16234 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-starv 16643 df-sca 16644 df-vsca 16645 df-ip 16646 df-tset 16647 df-ple 16648 df-ds 16650 df-unif 16651 df-hom 16652 df-cco 16653 df-rest 16759 df-topn 16760 df-0g 16778 df-gsum 16779 df-topgen 16780 df-pt 16781 df-prds 16784 df-xrs 16838 df-qtop 16843 df-imas 16844 df-xps 16846 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-mulg 18297 df-cntz 18519 df-cmn 18980 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-fbas 20168 df-fg 20169 df-cnfld 20172 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-cld 21724 df-ntr 21725 df-cls 21726 df-nei 21803 df-lp 21841 df-perf 21842 df-cn 21932 df-cnp 21933 df-haus 22020 df-tx 22267 df-hmeo 22460 df-fil 22551 df-fm 22643 df-flim 22644 df-flf 22645 df-xms 23027 df-ms 23028 df-tms 23029 df-cncf 23584 df-limc 24570 df-dv 24571 df-log 25252 df-cxp 25253 df-sgm 25791 |
This theorem is referenced by: perfect1 25916 perfectlem1 25917 perfectlem2 25918 perfectALTVlem1 44634 perfectALTVlem2 44635 |
Copyright terms: Public domain | W3C validator |