Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decmul1c | Structured version Visualization version GIF version |
Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
decmul1c.e | ⊢ 𝐸 ∈ ℕ0 |
decmul1c.c | ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
decmul1c.2 | ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 |
Ref | Expression |
---|---|
decmul1c | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12505 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
6 | dfdec10 12490 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
7 | 5, 6 | eqtri 2764 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
9 | decmul1c.e | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
10 | decmul1c.c | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | |
11 | decmul1c.2 | . . . 4 ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 | |
12 | dfdec10 12490 | . . . 4 ⊢ ;𝐸𝐷 = ((;10 · 𝐸) + 𝐷) | |
13 | 11, 12 | eqtri 2764 | . . 3 ⊢ (𝐵 · 𝑃) = ((;10 · 𝐸) + 𝐷) |
14 | 1, 2, 3, 4, 7, 8, 9, 10, 13 | nummul1c 12536 | . 2 ⊢ (𝑁 · 𝑃) = ((;10 · 𝐶) + 𝐷) |
15 | dfdec10 12490 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
16 | 14, 15 | eqtr4i 2767 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 (class class class)co 7307 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 ℕ0cn0 12283 ;cdc 12487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-ltxr 11064 df-sub 11257 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-dec 12488 |
This theorem is referenced by: 2exp8 16839 2exp11 16840 2exp16 16841 prmlem2 16870 631prm 16877 1259lem1 16881 1259lem2 16882 1259lem3 16883 1259lem4 16884 1259prm 16886 2503lem1 16887 2503lem2 16888 2503prm 16890 4001lem1 16891 4001lem2 16892 4001prm 16895 log2ublem3 26147 log2ub 26148 ex-fac 28864 dpmul 31236 12lcm5e60 40216 60lcm7e420 40218 3exp7 40261 3lexlogpow5ineq1 40262 3lexlogpow5ineq5 40268 aks4d1p1 40284 235t711 40514 ex-decpmul 40515 resqrtvalex 41466 imsqrtvalex 41467 wallispi2lem2 43842 fmtno5lem1 45249 fmtno5lem2 45250 fmtno5lem3 45251 257prm 45257 fmtno4nprmfac193 45270 fmtno5faclem1 45275 fmtno5faclem2 45276 m11nprm 45297 11t31e341 45428 2exp340mod341 45429 |
Copyright terms: Public domain | W3C validator |