![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decmul1c | Structured version Visualization version GIF version |
Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
decmul1c.e | ⊢ 𝐸 ∈ ℕ0 |
decmul1c.c | ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
decmul1c.2 | ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 |
Ref | Expression |
---|---|
decmul1c | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 11965 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
6 | dfdec10 11950 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
7 | 5, 6 | eqtri 2819 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
9 | decmul1c.e | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
10 | decmul1c.c | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 | |
11 | decmul1c.2 | . . . 4 ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 | |
12 | dfdec10 11950 | . . . 4 ⊢ ;𝐸𝐷 = ((;10 · 𝐸) + 𝐷) | |
13 | 11, 12 | eqtri 2819 | . . 3 ⊢ (𝐵 · 𝑃) = ((;10 · 𝐸) + 𝐷) |
14 | 1, 2, 3, 4, 7, 8, 9, 10, 13 | nummul1c 11996 | . 2 ⊢ (𝑁 · 𝑃) = ((;10 · 𝐶) + 𝐷) |
15 | dfdec10 11950 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
16 | 14, 15 | eqtr4i 2822 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 (class class class)co 7016 0cc0 10383 1c1 10384 + caddc 10386 · cmul 10388 ℕ0cn0 11745 ;cdc 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-ltxr 10526 df-sub 10719 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-dec 11948 |
This theorem is referenced by: 2exp8 16252 2exp16 16253 prmlem2 16282 631prm 16289 1259lem1 16293 1259lem2 16294 1259lem3 16295 1259lem4 16296 1259prm 16298 2503lem1 16299 2503lem2 16300 2503prm 16302 4001lem1 16303 4001lem2 16304 4001prm 16307 log2ublem3 25208 log2ub 25209 ex-fac 27922 dpmul 30273 235t711 38699 ex-decpmul 38700 wallispi2lem2 41899 fmtno5lem1 43197 fmtno5lem2 43198 fmtno5lem3 43199 257prm 43205 fmtno4nprmfac193 43218 fmtno5faclem1 43223 fmtno5faclem2 43224 2exp11 43247 m11nprm 43248 11t31e341 43379 2exp340mod341 43380 |
Copyright terms: Public domain | W3C validator |