MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decmul1c Structured version   Visualization version   GIF version

Theorem decmul1c 12484
Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul1.p 𝑃 ∈ ℕ0
decmul1.a 𝐴 ∈ ℕ0
decmul1.b 𝐵 ∈ ℕ0
decmul1.n 𝑁 = 𝐴𝐵
decmul1.0 𝐷 ∈ ℕ0
decmul1c.e 𝐸 ∈ ℕ0
decmul1c.c ((𝐴 · 𝑃) + 𝐸) = 𝐶
decmul1c.2 (𝐵 · 𝑃) = 𝐸𝐷
Assertion
Ref Expression
decmul1c (𝑁 · 𝑃) = 𝐶𝐷

Proof of Theorem decmul1c
StepHypRef Expression
1 10nn0 12437 . . 3 10 ∈ ℕ0
2 decmul1.p . . 3 𝑃 ∈ ℕ0
3 decmul1.a . . 3 𝐴 ∈ ℕ0
4 decmul1.b . . 3 𝐵 ∈ ℕ0
5 decmul1.n . . . 4 𝑁 = 𝐴𝐵
6 dfdec10 12422 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
75, 6eqtri 2767 . . 3 𝑁 = ((10 · 𝐴) + 𝐵)
8 decmul1.0 . . 3 𝐷 ∈ ℕ0
9 decmul1c.e . . 3 𝐸 ∈ ℕ0
10 decmul1c.c . . 3 ((𝐴 · 𝑃) + 𝐸) = 𝐶
11 decmul1c.2 . . . 4 (𝐵 · 𝑃) = 𝐸𝐷
12 dfdec10 12422 . . . 4 𝐸𝐷 = ((10 · 𝐸) + 𝐷)
1311, 12eqtri 2767 . . 3 (𝐵 · 𝑃) = ((10 · 𝐸) + 𝐷)
141, 2, 3, 4, 7, 8, 9, 10, 13nummul1c 12468 . 2 (𝑁 · 𝑃) = ((10 · 𝐶) + 𝐷)
15 dfdec10 12422 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
1614, 15eqtr4i 2770 1 (𝑁 · 𝑃) = 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  0cn0 12216  cdc 12419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-dec 12420
This theorem is referenced by:  2exp8  16771  2exp11  16772  2exp16  16773  prmlem2  16802  631prm  16809  1259lem1  16813  1259lem2  16814  1259lem3  16815  1259lem4  16816  1259prm  16818  2503lem1  16819  2503lem2  16820  2503prm  16822  4001lem1  16823  4001lem2  16824  4001prm  16827  log2ublem3  26079  log2ub  26080  ex-fac  28794  dpmul  31166  12lcm5e60  39996  60lcm7e420  39998  3exp7  40041  3lexlogpow5ineq1  40042  3lexlogpow5ineq5  40048  aks4d1p1  40064  235t711  40299  ex-decpmul  40300  resqrtvalex  41206  imsqrtvalex  41207  wallispi2lem2  43567  fmtno5lem1  44957  fmtno5lem2  44958  fmtno5lem3  44959  257prm  44965  fmtno4nprmfac193  44978  fmtno5faclem1  44983  fmtno5faclem2  44984  m11nprm  45005  11t31e341  45136  2exp340mod341  45137
  Copyright terms: Public domain W3C validator