![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decmul1c | Structured version Visualization version GIF version |
Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul1.p | โข ๐ โ โ0 |
decmul1.a | โข ๐ด โ โ0 |
decmul1.b | โข ๐ต โ โ0 |
decmul1.n | โข ๐ = ;๐ด๐ต |
decmul1.0 | โข ๐ท โ โ0 |
decmul1c.e | โข ๐ธ โ โ0 |
decmul1c.c | โข ((๐ด ยท ๐) + ๐ธ) = ๐ถ |
decmul1c.2 | โข (๐ต ยท ๐) = ;๐ธ๐ท |
Ref | Expression |
---|---|
decmul1c | โข (๐ ยท ๐) = ;๐ถ๐ท |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12695 | . . 3 โข ;10 โ โ0 | |
2 | decmul1.p | . . 3 โข ๐ โ โ0 | |
3 | decmul1.a | . . 3 โข ๐ด โ โ0 | |
4 | decmul1.b | . . 3 โข ๐ต โ โ0 | |
5 | decmul1.n | . . . 4 โข ๐ = ;๐ด๐ต | |
6 | dfdec10 12680 | . . . 4 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
7 | 5, 6 | eqtri 2761 | . . 3 โข ๐ = ((;10 ยท ๐ด) + ๐ต) |
8 | decmul1.0 | . . 3 โข ๐ท โ โ0 | |
9 | decmul1c.e | . . 3 โข ๐ธ โ โ0 | |
10 | decmul1c.c | . . 3 โข ((๐ด ยท ๐) + ๐ธ) = ๐ถ | |
11 | decmul1c.2 | . . . 4 โข (๐ต ยท ๐) = ;๐ธ๐ท | |
12 | dfdec10 12680 | . . . 4 โข ;๐ธ๐ท = ((;10 ยท ๐ธ) + ๐ท) | |
13 | 11, 12 | eqtri 2761 | . . 3 โข (๐ต ยท ๐) = ((;10 ยท ๐ธ) + ๐ท) |
14 | 1, 2, 3, 4, 7, 8, 9, 10, 13 | nummul1c 12726 | . 2 โข (๐ ยท ๐) = ((;10 ยท ๐ถ) + ๐ท) |
15 | dfdec10 12680 | . 2 โข ;๐ถ๐ท = ((;10 ยท ๐ถ) + ๐ท) | |
16 | 14, 15 | eqtr4i 2764 | 1 โข (๐ ยท ๐) = ;๐ถ๐ท |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 โ wcel 2107 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 ยท cmul 11115 โ0cn0 12472 ;cdc 12677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-dec 12678 |
This theorem is referenced by: 2exp8 17022 2exp11 17023 2exp16 17024 prmlem2 17053 631prm 17060 1259lem1 17064 1259lem2 17065 1259lem3 17066 1259lem4 17067 1259prm 17069 2503lem1 17070 2503lem2 17071 2503prm 17073 4001lem1 17074 4001lem2 17075 4001prm 17078 log2ublem3 26453 log2ub 26454 ex-fac 29704 dpmul 32079 12lcm5e60 40873 60lcm7e420 40875 3exp7 40918 3lexlogpow5ineq1 40919 3lexlogpow5ineq5 40925 aks4d1p1 40941 235t711 41205 ex-decpmul 41206 sum9cubes 41414 resqrtvalex 42396 imsqrtvalex 42397 wallispi2lem2 44788 fmtno5lem1 46221 fmtno5lem2 46222 fmtno5lem3 46223 257prm 46229 fmtno4nprmfac193 46242 fmtno5faclem1 46247 fmtno5faclem2 46248 m11nprm 46269 11t31e341 46400 2exp340mod341 46401 |
Copyright terms: Public domain | W3C validator |