MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znadd Structured version   Visualization version   GIF version

Theorem znadd 20742
Description: The additive structure of ℤ/n is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
znval2.s 𝑆 = (RSpan‘ℤring)
znval2.u 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
znval2.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znadd (𝑁 ∈ ℕ0 → (+g𝑈) = (+g𝑌))

Proof of Theorem znadd
StepHypRef Expression
1 znval2.s . 2 𝑆 = (RSpan‘ℤring)
2 znval2.u . 2 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
3 znval2.y . 2 𝑌 = (ℤ/nℤ‘𝑁)
4 plusgid 16985 . 2 +g = Slot (+g‘ndx)
5 plendxnplusgndx 17077 . . 3 (le‘ndx) ≠ (+g‘ndx)
65necomi 3000 . 2 (+g‘ndx) ≠ (le‘ndx)
71, 2, 3, 4, 6znbaslem 20738 1 (𝑁 ∈ ℕ0 → (+g𝑈) = (+g𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {csn 4567  cfv 6431  (class class class)co 7269  0cn0 12231  ndxcnx 16890  +gcplusg 16958  lecple 16965   /s cqus 17212   ~QG cqg 18747  RSpancrsp 20429  ringczring 20666  ℤ/nczn 20700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-addf 10949  ax-mulf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-fz 13237  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-starv 16973  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-grp 18576  df-minusg 18577  df-subg 18748  df-cmn 19384  df-mgp 19717  df-ur 19734  df-ring 19781  df-cring 19782  df-subrg 20018  df-cnfld 20594  df-zring 20667  df-zn 20704
This theorem is referenced by:  znzrh  20746  zncrng  20748
  Copyright terms: Public domain W3C validator