MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnncand Structured version   Visualization version   GIF version

Theorem pnncand 11253
Description: Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
pnncand (𝜑 → ((𝐴 + 𝐵) − (𝐴𝐶)) = (𝐵 + 𝐶))

Proof of Theorem pnncand
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 pnncan 11144 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴𝐶)) = (𝐵 + 𝐶))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → ((𝐴 + 𝐵) − (𝐴𝐶)) = (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  (class class class)co 7232  cc 10752   + caddc 10757  cmin 11087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-po 5483  df-so 5484  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-ltxr 10897  df-sub 11089
This theorem is referenced by:  cju  11851  bcp1m1  13914  remim  14708  amgm2  14961  fallfacfwd  15626  sinadd  15753  subsin  15760  subcos  15764  pythagtriplem15  16410  difsqpwdvds  16468  cphipval2  24165  efif1olem2  25459  heron  25748  quad2  25749  dquart  25763  fsumharmonic  25921  lgamgulmlem3  25940  basellem5  25994  selberg2  26459  selberg4  26469  pntrlog2bndlem6  26491  rmxdbl  40497  jm2.16nn0  40562  sqrtcval  40958  hoiqssbllem2  43867  itscnhlc0xyqsol  45815
  Copyright terms: Public domain W3C validator