MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppncand Structured version   Visualization version   GIF version

Theorem ppncand 11036
Description: Cancellation law for mixed addition and subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
subaddd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
ppncand (𝜑 → ((𝐴 + 𝐵) + (𝐶𝐵)) = (𝐴 + 𝐶))

Proof of Theorem ppncand
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subaddd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 ppncan 10927 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶𝐵)) = (𝐴 + 𝐶))
51, 2, 3, 4syl3anc 1367 1 (𝜑 → ((𝐴 + 𝐵) + (𝐶𝐵)) = (𝐴 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  (class class class)co 7155  cc 10534   + caddc 10539  cmin 10869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-ltxr 10679  df-sub 10871
This theorem is referenced by:  cju  11633  remim  14475  absmax  14688  bhmafibid2cn  14823  arisum  15214  binomfallfaclem2  15393  cosadd  15517  addsin  15522  cosmul  15525  addcos  15526  pythagtriplem12  16162  pythagtriplem17  16167  fldivp1  16232  mul4sqlem  16288  vdwlem8  16323  nmparlem  23841  cphipval2  23843  heron  25415  quart1lem  25432  quart1  25433  cosasin  25481  cosatan  25498  2sqblem  26006  dchrisumlem2  26065  cncph  28595  divcnvlin  32964  fwddifnp1  33626  rmxluc  39531  rmyluc  39532  acongeq  39578  sinmulcos  42144  fourierdlem65  42455  itsclc0xyqsolr  44755
  Copyright terms: Public domain W3C validator