MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm2 Structured version   Visualization version   GIF version

Theorem amgm2 15295
Description: Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
amgm2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))

Proof of Theorem amgm2
StepHypRef Expression
1 2cn 12221 . . . . . 6 2 ∈ ℂ
2 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
3 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
4 remulcl 11113 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
52, 3, 4syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
6 mulge0 11656 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7 resqrtcl 15178 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ)
85, 6, 7syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ)
98recnd 11162 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℂ)
10 sqmul 14044 . . . . . 6 ((2 ∈ ℂ ∧ (√‘(𝐴 · 𝐵)) ∈ ℂ) → ((2 · (√‘(𝐴 · 𝐵)))↑2) = ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)))
111, 9, 10sylancr 587 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵)))↑2) = ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)))
12 sq2 14122 . . . . . . 7 (2↑2) = 4
1312oveq1i 7363 . . . . . 6 ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)) = (4 · ((√‘(𝐴 · 𝐵))↑2))
145recnd 11162 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℂ)
15 sqrtth 15290 . . . . . . . 8 ((𝐴 · 𝐵) ∈ ℂ → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵))
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵))
1716oveq2d 7369 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · ((√‘(𝐴 · 𝐵))↑2)) = (4 · (𝐴 · 𝐵)))
1813, 17eqtrid 2776 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)) = (4 · (𝐴 · 𝐵)))
1911, 18eqtrd 2764 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵)))↑2) = (4 · (𝐴 · 𝐵)))
202, 3resubcld 11566 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵) ∈ ℝ)
2120sqge0d 14062 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ ((𝐴𝐵)↑2))
222recnd 11162 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
233recnd 11162 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℂ)
24 binom2 14142 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
2522, 23, 24syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
26 binom2sub 14145 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
2722, 23, 26syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
2825, 27oveq12d 7371 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))))
292resqcld 14050 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℝ)
30 2re 12220 . . . . . . . . . . . 12 2 ∈ ℝ
31 remulcl 11113 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (2 · (𝐴 · 𝐵)) ∈ ℝ)
3230, 5, 31sylancr 587 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℝ)
3329, 32readdcld 11163 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℝ)
3433recnd 11162 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
3529, 32resubcld 11566 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℝ)
3635recnd 11162 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℂ)
373resqcld 14050 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℝ)
3837recnd 11162 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℂ)
3934, 36, 38pnpcan2d 11531 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))))
4032recnd 11162 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
41402timesd 12385 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (2 · (𝐴 · 𝐵))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵))))
42 2t2e4 12305 . . . . . . . . . . 11 (2 · 2) = 4
4342oveq1i 7363 . . . . . . . . . 10 ((2 · 2) · (𝐴 · 𝐵)) = (4 · (𝐴 · 𝐵))
44 2cnd 12224 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 2 ∈ ℂ)
4544, 44, 14mulassd 11157 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · 2) · (𝐴 · 𝐵)) = (2 · (2 · (𝐴 · 𝐵))))
4643, 45eqtr3id 2778 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) = (2 · (2 · (𝐴 · 𝐵))))
4729recnd 11162 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℂ)
4847, 40, 40pnncand 11532 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵))))
4941, 46, 483eqtr4rd 2775 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = (4 · (𝐴 · 𝐵)))
5028, 39, 493eqtrd 2768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = (4 · (𝐴 · 𝐵)))
512, 3readdcld 11163 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
5251resqcld 14050 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℝ)
5352recnd 11162 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℂ)
5420resqcld 14050 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵)↑2) ∈ ℝ)
5554recnd 11162 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵)↑2) ∈ ℂ)
56 4re 12230 . . . . . . . . . 10 4 ∈ ℝ
57 remulcl 11113 . . . . . . . . . 10 ((4 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (4 · (𝐴 · 𝐵)) ∈ ℝ)
5856, 5, 57sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℝ)
5958recnd 11162 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℂ)
60 subsub23 11386 . . . . . . . 8 ((((𝐴 + 𝐵)↑2) ∈ ℂ ∧ ((𝐴𝐵)↑2) ∈ ℂ ∧ (4 · (𝐴 · 𝐵)) ∈ ℂ) → ((((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴𝐵)↑2)))
6153, 55, 59, 60syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴𝐵)↑2)))
6250, 61mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴𝐵)↑2))
6321, 62breqtrrd 5123 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))))
6452, 58subge0d 11728 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) ↔ (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2)))
6563, 64mpbid 232 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2))
6619, 65eqbrtrd 5117 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2))
67 remulcl 11113 . . . . 5 ((2 ∈ ℝ ∧ (√‘(𝐴 · 𝐵)) ∈ ℝ) → (2 · (√‘(𝐴 · 𝐵))) ∈ ℝ)
6830, 8, 67sylancr 587 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (√‘(𝐴 · 𝐵))) ∈ ℝ)
69 sqrtge0 15182 . . . . . 6 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ (√‘(𝐴 · 𝐵)))
705, 6, 69syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (√‘(𝐴 · 𝐵)))
71 0le2 12248 . . . . . 6 0 ≤ 2
72 mulge0 11656 . . . . . 6 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ ((√‘(𝐴 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(𝐴 · 𝐵)))) → 0 ≤ (2 · (√‘(𝐴 · 𝐵))))
7330, 71, 72mpanl12 702 . . . . 5 (((√‘(𝐴 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(𝐴 · 𝐵))) → 0 ≤ (2 · (√‘(𝐴 · 𝐵))))
748, 70, 73syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (2 · (√‘(𝐴 · 𝐵))))
75 addge0 11627 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
7675an4s 660 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
7768, 51, 74, 76le2sqd 14182 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵) ↔ ((2 · (√‘(𝐴 · 𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2)))
7866, 77mpbird 257 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵))
79 2rp 12916 . . . 4 2 ∈ ℝ+
8079a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 2 ∈ ℝ+)
818, 51, 80lemuldiv2d 13005 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵) ↔ (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)))
8278, 81mpbid 232 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028   + caddc 11031   · cmul 11033  cle 11169  cmin 11365   / cdiv 11795  2c2 12201  4c4 12203  +crp 12911  cexp 13986  csqrt 15158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator