![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bcp1m1 | Structured version Visualization version GIF version |
Description: Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
Ref | Expression |
---|---|
bcp1m1 | ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 11659 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
2 | nn0z 11727 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | peano2zm 11747 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
5 | bccmpl 13388 | . . 3 ⊢ (((𝑁 + 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1)))) | |
6 | 1, 4, 5 | syl2anc 581 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1)))) |
7 | nn0cn 11628 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
8 | 1cnd 10350 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
9 | 7, 8, 8 | pnncand 10751 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = (1 + 1)) |
10 | df-2 11413 | . . . . 5 ⊢ 2 = (1 + 1) | |
11 | 9, 10 | syl6eqr 2878 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = 2) |
12 | 11 | oveq2d 6920 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = ((𝑁 + 1)C2)) |
13 | bcn2 13398 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2)) | |
14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2)) |
15 | ax-1cn 10309 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | pncan 10606 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
17 | 7, 15, 16 | sylancl 582 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
18 | 17 | oveq2d 6920 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) · ((𝑁 + 1) − 1)) = ((𝑁 + 1) · 𝑁)) |
19 | 18 | oveq1d 6919 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2) = (((𝑁 + 1) · 𝑁) / 2)) |
20 | 14, 19 | eqtrd 2860 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · 𝑁) / 2)) |
21 | 12, 20 | eqtrd 2860 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = (((𝑁 + 1) · 𝑁) / 2)) |
22 | 6, 21 | eqtrd 2860 | 1 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 (class class class)co 6904 ℂcc 10249 1c1 10252 + caddc 10254 · cmul 10256 − cmin 10584 / cdiv 11008 2c2 11405 ℕ0cn0 11617 ℤcz 11703 Ccbc 13381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-div 11009 df-nn 11350 df-2 11413 df-n0 11618 df-z 11704 df-uz 11968 df-rp 12112 df-fz 12619 df-seq 13095 df-fac 13353 df-bc 13382 |
This theorem is referenced by: arisum 14965 |
Copyright terms: Public domain | W3C validator |