Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcp1m1 | Structured version Visualization version GIF version |
Description: Compute the binomial coefficient of (𝑁 + 1) over (𝑁 − 1) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.) |
Ref | Expression |
---|---|
bcp1m1 | ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 12203 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
2 | nn0z 12273 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | peano2zm 12293 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ) |
5 | bccmpl 13951 | . . 3 ⊢ (((𝑁 + 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1)))) | |
6 | 1, 4, 5 | syl2anc 583 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1)))) |
7 | nn0cn 12173 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
8 | 1cnd 10901 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) | |
9 | 7, 8, 8 | pnncand 11301 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = (1 + 1)) |
10 | df-2 11966 | . . . . 5 ⊢ 2 = (1 + 1) | |
11 | 9, 10 | eqtr4di 2797 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − (𝑁 − 1)) = 2) |
12 | 11 | oveq2d 7271 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = ((𝑁 + 1)C2)) |
13 | bcn2 13961 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2)) | |
14 | 1, 13 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2)) |
15 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
16 | pncan 11157 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁) | |
17 | 7, 15, 16 | sylancl 585 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁) |
18 | 17 | oveq2d 7271 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1) · ((𝑁 + 1) − 1)) = ((𝑁 + 1) · 𝑁)) |
19 | 18 | oveq1d 7270 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) · ((𝑁 + 1) − 1)) / 2) = (((𝑁 + 1) · 𝑁) / 2)) |
20 | 14, 19 | eqtrd 2778 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C2) = (((𝑁 + 1) · 𝑁) / 2)) |
21 | 12, 20 | eqtrd 2778 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C((𝑁 + 1) − (𝑁 − 1))) = (((𝑁 + 1) · 𝑁) / 2)) |
22 | 6, 21 | eqtrd 2778 | 1 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 / cdiv 11562 2c2 11958 ℕ0cn0 12163 ℤcz 12249 Ccbc 13944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-fac 13916 df-bc 13945 |
This theorem is referenced by: arisum 15500 |
Copyright terms: Public domain | W3C validator |