Proof of Theorem pythagtriplem15
| Step | Hyp | Ref
| Expression |
| 1 | | pythagtriplem15.1 |
. . . . 5
⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) |
| 2 | 1 | pythagtriplem12 16865 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀↑2) = ((𝐶 + 𝐴) / 2)) |
| 3 | | pythagtriplem15.2 |
. . . . 5
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
| 4 | 3 | pythagtriplem14 16867 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) |
| 5 | 2, 4 | oveq12d 7450 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝑀↑2) − (𝑁↑2)) = (((𝐶 + 𝐴) / 2) − ((𝐶 − 𝐴) / 2))) |
| 6 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℕ) |
| 7 | | simp1 1136 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℕ) |
| 8 | 6, 7 | nnaddcld 12319 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐴) ∈ ℕ) |
| 9 | 8 | nncnd 12283 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐴) ∈ ℂ) |
| 10 | 9 | 3ad2ant1 1133 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐴) ∈ ℂ) |
| 11 | | nnz 12636 |
. . . . . . . 8
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
| 12 | 11 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℤ) |
| 13 | | nnz 12636 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
| 14 | 13 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 15 | 12, 14 | zsubcld 12729 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℤ) |
| 16 | 15 | zcnd 12725 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℂ) |
| 17 | 16 | 3ad2ant1 1133 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐴) ∈ ℂ) |
| 18 | | 2cnne0 12477 |
. . . . 5
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 19 | | divsubdir 11962 |
. . . . 5
⊢ (((𝐶 + 𝐴) ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ ∧ (2 ∈ ℂ
∧ 2 ≠ 0)) → (((𝐶 + 𝐴) − (𝐶 − 𝐴)) / 2) = (((𝐶 + 𝐴) / 2) − ((𝐶 − 𝐴) / 2))) |
| 20 | 18, 19 | mp3an3 1451 |
. . . 4
⊢ (((𝐶 + 𝐴) ∈ ℂ ∧ (𝐶 − 𝐴) ∈ ℂ) → (((𝐶 + 𝐴) − (𝐶 − 𝐴)) / 2) = (((𝐶 + 𝐴) / 2) − ((𝐶 − 𝐴) / 2))) |
| 21 | 10, 17, 20 | syl2anc 584 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐴) − (𝐶 − 𝐴)) / 2) = (((𝐶 + 𝐴) / 2) − ((𝐶 − 𝐴) / 2))) |
| 22 | 5, 21 | eqtr4d 2779 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝑀↑2) − (𝑁↑2)) = (((𝐶 + 𝐴) − (𝐶 − 𝐴)) / 2)) |
| 23 | | nncn 12275 |
. . . . . . 7
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
| 24 | 23 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℂ) |
| 25 | 24 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
| 26 | | nncn 12275 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
| 27 | 26 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℂ) |
| 28 | 27 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ) |
| 29 | 25, 28, 28 | pnncand 11660 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐴) − (𝐶 − 𝐴)) = (𝐴 + 𝐴)) |
| 30 | 28 | 2timesd 12511 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · 𝐴) = (𝐴 + 𝐴)) |
| 31 | 29, 30 | eqtr4d 2779 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐴) − (𝐶 − 𝐴)) = (2 · 𝐴)) |
| 32 | 31 | oveq1d 7447 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐴) − (𝐶 − 𝐴)) / 2) = ((2 · 𝐴) / 2)) |
| 33 | | 2cn 12342 |
. . . 4
⊢ 2 ∈
ℂ |
| 34 | | 2ne0 12371 |
. . . 4
⊢ 2 ≠
0 |
| 35 | | divcan3 11949 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝐴) / 2) = 𝐴) |
| 36 | 33, 34, 35 | mp3an23 1454 |
. . 3
⊢ (𝐴 ∈ ℂ → ((2
· 𝐴) / 2) = 𝐴) |
| 37 | 28, 36 | syl 17 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · 𝐴) / 2) = 𝐴) |
| 38 | 22, 32, 37 | 3eqtrrd 2781 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 = ((𝑀↑2) − (𝑁↑2))) |