MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem15 Structured version   Visualization version   GIF version

Theorem pythagtriplem15 16789
Description: Lemma for pythagtrip 16794. Show the relationship between ๐‘€, ๐‘, and ๐ด. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
pythagtriplem15.1 ๐‘€ = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
pythagtriplem15.2 ๐‘ = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
Assertion
Ref Expression
pythagtriplem15 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ด = ((๐‘€โ†‘2) โˆ’ (๐‘โ†‘2)))

Proof of Theorem pythagtriplem15
StepHypRef Expression
1 pythagtriplem15.1 . . . . 5 ๐‘€ = (((โˆšโ€˜(๐ถ + ๐ต)) + (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
21pythagtriplem12 16786 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐‘€โ†‘2) = ((๐ถ + ๐ด) / 2))
3 pythagtriplem15.2 . . . . 5 ๐‘ = (((โˆšโ€˜(๐ถ + ๐ต)) โˆ’ (โˆšโ€˜(๐ถ โˆ’ ๐ต))) / 2)
43pythagtriplem14 16788 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐‘โ†‘2) = ((๐ถ โˆ’ ๐ด) / 2))
52, 4oveq12d 7432 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐‘€โ†‘2) โˆ’ (๐‘โ†‘2)) = (((๐ถ + ๐ด) / 2) โˆ’ ((๐ถ โˆ’ ๐ด) / 2)))
6 simp3 1136 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„•)
7 simp1 1134 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„•)
86, 7nnaddcld 12286 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ด) โˆˆ โ„•)
98nncnd 12250 . . . . 5 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ + ๐ด) โˆˆ โ„‚)
1093ad2ant1 1131 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ + ๐ด) โˆˆ โ„‚)
11 nnz 12601 . . . . . . . 8 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„ค)
12113ad2ant3 1133 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„ค)
13 nnz 12601 . . . . . . . 8 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„ค)
14133ad2ant1 1131 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„ค)
1512, 14zsubcld 12693 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ด) โˆˆ โ„ค)
1615zcnd 12689 . . . . 5 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ถ โˆ’ ๐ด) โˆˆ โ„‚)
17163ad2ant1 1131 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (๐ถ โˆ’ ๐ด) โˆˆ โ„‚)
18 2cnne0 12444 . . . . 5 (2 โˆˆ โ„‚ โˆง 2 โ‰  0)
19 divsubdir 11930 . . . . 5 (((๐ถ + ๐ด) โˆˆ โ„‚ โˆง (๐ถ โˆ’ ๐ด) โˆˆ โ„‚ โˆง (2 โˆˆ โ„‚ โˆง 2 โ‰  0)) โ†’ (((๐ถ + ๐ด) โˆ’ (๐ถ โˆ’ ๐ด)) / 2) = (((๐ถ + ๐ด) / 2) โˆ’ ((๐ถ โˆ’ ๐ด) / 2)))
2018, 19mp3an3 1447 . . . 4 (((๐ถ + ๐ด) โˆˆ โ„‚ โˆง (๐ถ โˆ’ ๐ด) โˆˆ โ„‚) โ†’ (((๐ถ + ๐ด) โˆ’ (๐ถ โˆ’ ๐ด)) / 2) = (((๐ถ + ๐ด) / 2) โˆ’ ((๐ถ โˆ’ ๐ด) / 2)))
2110, 17, 20syl2anc 583 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ถ + ๐ด) โˆ’ (๐ถ โˆ’ ๐ด)) / 2) = (((๐ถ + ๐ด) / 2) โˆ’ ((๐ถ โˆ’ ๐ด) / 2)))
225, 21eqtr4d 2770 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐‘€โ†‘2) โˆ’ (๐‘โ†‘2)) = (((๐ถ + ๐ด) โˆ’ (๐ถ โˆ’ ๐ด)) / 2))
23 nncn 12242 . . . . . . 7 (๐ถ โˆˆ โ„• โ†’ ๐ถ โˆˆ โ„‚)
24233ad2ant3 1133 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ถ โˆˆ โ„‚)
25243ad2ant1 1131 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ถ โˆˆ โ„‚)
26 nncn 12242 . . . . . . 7 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„‚)
27263ad2ant1 1131 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„‚)
28273ad2ant1 1131 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ด โˆˆ โ„‚)
2925, 28, 28pnncand 11632 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐ถ + ๐ด) โˆ’ (๐ถ โˆ’ ๐ด)) = (๐ด + ๐ด))
30282timesd 12477 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (2 ยท ๐ด) = (๐ด + ๐ด))
3129, 30eqtr4d 2770 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((๐ถ + ๐ด) โˆ’ (๐ถ โˆ’ ๐ด)) = (2 ยท ๐ด))
3231oveq1d 7429 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ (((๐ถ + ๐ด) โˆ’ (๐ถ โˆ’ ๐ด)) / 2) = ((2 ยท ๐ด) / 2))
33 2cn 12309 . . . 4 2 โˆˆ โ„‚
34 2ne0 12338 . . . 4 2 โ‰  0
35 divcan3 11920 . . . 4 ((๐ด โˆˆ โ„‚ โˆง 2 โˆˆ โ„‚ โˆง 2 โ‰  0) โ†’ ((2 ยท ๐ด) / 2) = ๐ด)
3633, 34, 35mp3an23 1450 . . 3 (๐ด โˆˆ โ„‚ โ†’ ((2 ยท ๐ด) / 2) = ๐ด)
3728, 36syl 17 . 2 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ((2 ยท ๐ด) / 2) = ๐ด)
3822, 32, 373eqtrrd 2772 1 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ((๐ด gcd ๐ต) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐ด = ((๐‘€โ†‘2) โˆ’ (๐‘โ†‘2)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 395   โˆง w3a 1085   = wceq 1534   โˆˆ wcel 2099   โ‰  wne 2935   class class class wbr 5142  โ€˜cfv 6542  (class class class)co 7414  โ„‚cc 11128  0cc0 11130  1c1 11131   + caddc 11133   ยท cmul 11135   โˆ’ cmin 11466   / cdiv 11893  โ„•cn 12234  2c2 12289  โ„คcz 12580  โ†‘cexp 14050  โˆšcsqrt 15204   โˆฅ cdvds 16222   gcd cgcd 16460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207
This theorem is referenced by:  pythagtriplem18  16792  flt4lem5  41996  flt4lem5a  41998
  Copyright terms: Public domain W3C validator