Step | Hyp | Ref
| Expression |
1 | | nn0addcl 12268 |
. . . 4
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑥 + 𝑦) ∈
ℕ0) |
2 | 1 | adantl 482 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ (𝑥 + 𝑦) ∈
ℕ0) |
3 | | simp2 1136 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 ∈ 𝐷) |
4 | | psrbag.d |
. . . . . . 7
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
5 | 4 | psrbag 21120 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
6 | 5 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
7 | 3, 6 | mpbid 231 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin)) |
8 | 7 | simpld 495 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹:𝐼⟶ℕ0) |
9 | | simp3 1137 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺 ∈ 𝐷) |
10 | 4 | psrbag 21120 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (𝐺 ∈ 𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (◡𝐺 “ ℕ) ∈
Fin))) |
11 | 10 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐺 ∈ 𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (◡𝐺 “ ℕ) ∈
Fin))) |
12 | 9, 11 | mpbid 231 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐺:𝐼⟶ℕ0 ∧ (◡𝐺 “ ℕ) ∈
Fin)) |
13 | 12 | simpld 495 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺:𝐼⟶ℕ0) |
14 | | simp1 1135 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐼 ∈ 𝑉) |
15 | | inidm 4152 |
. . 3
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
16 | 2, 8, 13, 14, 14, 15 | off 7551 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) |
17 | | frnnn0supp 12289 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) |
18 | 14, 16, 17 | syl2anc 584 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) |
19 | | fvexd 6789 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) |
20 | | fvexd 6789 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) |
21 | 8 | feqmptd 6837 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
22 | 13 | feqmptd 6837 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
23 | 14, 19, 20, 21, 22 | offval2 7553 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
24 | 23 | oveq1d 7290 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) = ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) supp 0)) |
25 | 18, 24 | eqtr3d 2780 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (◡(𝐹 ∘f + 𝐺) “ ℕ) = ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) supp 0)) |
26 | | frnnn0supp 12289 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
27 | 14, 8, 26 | syl2anc 584 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
28 | 7 | simprd 496 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (◡𝐹 “ ℕ) ∈
Fin) |
29 | 27, 28 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 supp 0) ∈ Fin) |
30 | | frnnn0supp 12289 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (◡𝐺 “ ℕ)) |
31 | 14, 13, 30 | syl2anc 584 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐺 supp 0) = (◡𝐺 “ ℕ)) |
32 | 12 | simprd 496 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (◡𝐺 “ ℕ) ∈
Fin) |
33 | 31, 32 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐺 supp 0) ∈ Fin) |
34 | | unfi 8955 |
. . . . 5
⊢ (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) →
((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈
Fin) |
35 | 29, 33, 34 | syl2anc 584 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
36 | | ssun1 4106 |
. . . . . . . . 9
⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) |
37 | 36 | a1i 11 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
38 | | c0ex 10969 |
. . . . . . . . 9
⊢ 0 ∈
V |
39 | 38 | a1i 11 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 0 ∈ V) |
40 | 8, 37, 14, 39 | suppssr 8012 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑥) = 0) |
41 | | ssun2 4107 |
. . . . . . . . 9
⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) |
42 | 41 | a1i 11 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
43 | 13, 42, 14, 39 | suppssr 8012 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝑥) = 0) |
44 | 40, 43 | oveq12d 7293 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝑥) + (𝐺‘𝑥)) = (0 + 0)) |
45 | | 00id 11150 |
. . . . . 6
⊢ (0 + 0) =
0 |
46 | 44, 45 | eqtrdi 2794 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝑥) + (𝐺‘𝑥)) = 0) |
47 | 46, 14 | suppss2 8016 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
48 | 35, 47 | ssfid 9042 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥))) supp 0) ∈ Fin) |
49 | 25, 48 | eqeltrd 2839 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈
Fin) |
50 | 4 | psrbag 21120 |
. . 3
⊢ (𝐼 ∈ 𝑉 → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈
Fin))) |
51 | 50 | 3ad2ant1 1132 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈
Fin))) |
52 | 16, 49, 51 | mpbir2and 710 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |