Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7358
ℂcc 11050 1c1 11053
+ caddc 11055 −
cmin 11386 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-ltxr 11195 df-sub 11388 |
This theorem is referenced by: elnnnn0
12457 fzm1
13522 fzosplitprm1
13683 modm1p1mod0
13828 facnn2
14183 cshimadifsn0
14720 pwdif
15754 mod2eq1n2dvds
16230 zob
16242 pwp1fsum
16274 prmonn2
16912 mulgfval
18875 cpmadugsumlemF
22228 addsq2nreurex
26795 axlowdimlem13
27906 wlk1walk
28590 wlkdlem2
28634 clwwlkccatlem
28936 clwwlknwwlksn
28985 clwwlkinwwlk
28987 clwwlkwwlksb
29001 wwlksubclwwlk
29005 eucrct2eupth
29192 frrusgrord0
29287 pthhashvtx
33724 poimirlem1
36082 poimirlem2
36083 poimirlem6
36087 poimirlem7
36088 poimirlem8
36089 poimirlem9
36090 poimirlem10
36091 poimirlem11
36092 poimirlem12
36093 poimirlem13
36094 poimirlem14
36095 poimirlem15
36096 poimirlem16
36097 poimirlem17
36098 poimirlem18
36099 poimirlem19
36100 poimirlem20
36101 poimirlem21
36102 poimirlem22
36103 poimirlem23
36104 poimirlem24
36105 poimirlem26
36107 poimirlem27
36108 poimirlem31
36112 poimirlem32
36113 trclfvdecomr
42007 m1mod0mod1
45568 iccpartgtprec
45619 sqrtpwpw2p
45737 fmtnorec2lem
45741 fmtnodvds
45743 fmtnorec3
45747 fmtnorec4
45748 lighneallem3
45806 lighneallem4
45809 dfodd6
45836 evenm1odd
45838 m1expoddALTV
45847 zofldiv2ALTV
45861 oddflALTV
45862 nn0onn0exALTV
45898 fppr2odd
45930 bgoldbtbndlem2
46005 bcpascm1
46434 altgsumbcALT
46436 nn0onn0ex
46616 zofldiv2
46624 logbpw2m1
46660 blenpw2m1
46672 nnolog2flm1
46683 blennngt2o2
46685 blengt1fldiv2p1
46686 blennn0e2
46687 |