Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7409
ℂcc 11108 1c1 11111
+ caddc 11113 −
cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 |
This theorem is referenced by: elnnnn0
12515 fzm1
13581 fzosplitprm1
13742 modm1p1mod0
13887 facnn2
14242 cshimadifsn0
14781 pwdif
15814 mod2eq1n2dvds
16290 zob
16302 pwp1fsum
16334 prmonn2
16972 mulgfval
18952 cpmadugsumlemF
22378 addsq2nreurex
26947 axlowdimlem13
28243 wlk1walk
28927 wlkdlem2
28971 clwwlkccatlem
29273 clwwlknwwlksn
29322 clwwlkinwwlk
29324 clwwlkwwlksb
29338 wwlksubclwwlk
29342 eucrct2eupth
29529 frrusgrord0
29624 pthhashvtx
34149 poimirlem1
36537 poimirlem2
36538 poimirlem6
36542 poimirlem7
36543 poimirlem8
36544 poimirlem9
36545 poimirlem10
36546 poimirlem11
36547 poimirlem12
36548 poimirlem13
36549 poimirlem14
36550 poimirlem15
36551 poimirlem16
36552 poimirlem17
36553 poimirlem18
36554 poimirlem19
36555 poimirlem20
36556 poimirlem21
36557 poimirlem22
36558 poimirlem23
36559 poimirlem24
36560 poimirlem26
36562 poimirlem27
36563 poimirlem31
36567 poimirlem32
36568 trclfvdecomr
42527 m1mod0mod1
46085 iccpartgtprec
46136 sqrtpwpw2p
46254 fmtnorec2lem
46258 fmtnodvds
46260 fmtnorec3
46264 fmtnorec4
46265 lighneallem3
46323 lighneallem4
46326 dfodd6
46353 evenm1odd
46355 m1expoddALTV
46364 zofldiv2ALTV
46378 oddflALTV
46379 nn0onn0exALTV
46415 fppr2odd
46447 bgoldbtbndlem2
46522 bcpascm1
47075 altgsumbcALT
47077 nn0onn0ex
47257 zofldiv2
47265 logbpw2m1
47301 blenpw2m1
47313 nnolog2flm1
47324 blennngt2o2
47326 blengt1fldiv2p1
47327 blennn0e2
47328 |