MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zltp1le Structured version   Visualization version   GIF version

Theorem zltp1le 12583
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zltp1le ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))

Proof of Theorem zltp1le
StepHypRef Expression
1 nnge1 12214 . . . 4 ((𝑁𝑀) ∈ ℕ → 1 ≤ (𝑁𝑀))
21a1i 11 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝑀) ∈ ℕ → 1 ≤ (𝑁𝑀)))
3 znnsub 12579 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
4 zre 12533 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 12533 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 1re 11174 . . . . 5 1 ∈ ℝ
7 leaddsub2 11655 . . . . 5 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁𝑀)))
86, 7mp3an2 1451 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁𝑀)))
94, 5, 8syl2an 596 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁𝑀)))
102, 3, 93imtr4d 294 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → (𝑀 + 1) ≤ 𝑁))
114adantr 480 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1211ltp1d 12113 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 < (𝑀 + 1))
13 peano2re 11347 . . . . 5 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
1411, 13syl 17 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 1) ∈ ℝ)
155adantl 481 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
16 ltletr 11266 . . . 4 ((𝑀 ∈ ℝ ∧ (𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁))
1711, 14, 15, 16syl3anc 1373 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < (𝑀 + 1) ∧ (𝑀 + 1) ≤ 𝑁) → 𝑀 < 𝑁))
1812, 17mpand 695 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁𝑀 < 𝑁))
1910, 18impbid 212 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  cz 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530
This theorem is referenced by:  zleltp1  12584  zlem1lt  12585  zgt0ge1  12588  nnltp1le  12590  nn0ltp1le  12592  btwnnz  12610  uzind2  12627  fzind  12632  eluzp1l  12820  eluz2b1  12878  zltaddlt1le  13466  fzsplit2  13510  fzdif1  13566  elfzop1le2  13633  m1modge3gt1  13883  bcval5  14283  seqcoll  14429  hashge2el2dif  14445  hashge2el2difr  14446  swrd2lsw  14918  2swrd2eqwrdeq  14919  isercoll  15634  nn0o1gt2  16351  divalglem6  16368  isprm3  16653  dvdsnprmd  16660  2mulprm  16663  oddprmge3  16670  ge2nprmge4  16671  hashdvds  16745  prmreclem5  16891  prmgaplem3  17024  prmgaplem5  17026  prmgaplem6  17027  prmgaplem8  17029  sylow1lem3  19530  chfacfscmul0  22745  chfacfscmulfsupp  22746  chfacfpmmul0  22749  chfacfpmmulfsupp  22750  dyaddisjlem  25496  plyeq0lem  26115  basellem2  26992  chtub  27123  bposlem9  27203  lgsdilem2  27244  lgsquadlem1  27291  2lgslem1a  27302  pntpbnd1  27497  pntpbnd2  27498  tgldimor  28429  eucrct2eupth  30174  konigsberglem5  30185  nndiffz1  32709  ltesubnnd  32747  dp2ltc  32807  smatrcl  33786  breprexplemc  34623  zltp1ne  35097  dnibndlem13  36478  knoppndvlem6  36505  poimirlem3  37617  poimirlem4  37618  poimirlem15  37629  poimirlem17  37631  poimirlem28  37642  zltp1led  41967  lcmineqlem11  42027  lcmineqlem23  42039  lcmineqlem  42040  sticksstones10  42143  eluzp1  42295  ellz1  42755  lzunuz  42756  rmygeid  42953  jm3.1lem2  43007  fzuntgd  43447  bccbc  44334  monoords  45295  fmul01lt1lem1  45582  dvnxpaek  45940  iblspltprt  45971  itgspltprt  45977  fourierdlem6  46111  fourierdlem12  46117  fourierdlem19  46124  fourierdlem42  46147  fourierdlem48  46152  fourierdlem49  46153  fourierdlem79  46183  ormkglobd  46873  addmodne  47345  m1modnep2mod  47353  iccpartiltu  47423  iccpartgt  47428  icceuelpartlem  47436  iccpartnel  47439  lighneallem4b  47610  evenltle  47718  gbowge7  47764  gbege6  47766  stgoldbwt  47777  sbgoldbwt  47778  sbgoldbalt  47782  sbgoldbm  47785  bgoldbtbndlem1  47806  tgblthelfgott  47816  elfzolborelfzop1  48508
  Copyright terms: Public domain W3C validator