| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1sgm2ppw | GIF version | ||
| Description: The sum of the divisors of 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 17-May-2016.) |
| Ref | Expression |
|---|---|
| 1sgm2ppw | ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8100 | . . 3 ⊢ 1 ∈ ℂ | |
| 2 | 2prm 12657 | . . 3 ⊢ 2 ∈ ℙ | |
| 3 | nnm1nn0 9418 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 4 | sgmppw 15674 | . . 3 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℙ ∧ (𝑁 − 1) ∈ ℕ0) → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) | |
| 5 | 1, 2, 3, 4 | mp3an12i 1375 | . 2 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) |
| 6 | 2rp 9862 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 7 | rpcxp1 15581 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐1) = 2) | |
| 8 | 6, 7 | mp1i 10 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (2↑𝑐1) = 2) |
| 9 | 8 | oveq1d 6022 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → ((2↑𝑐1)↑𝑘) = (2↑𝑘)) |
| 10 | 9 | sumeq2i 11883 | . . 3 ⊢ Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) |
| 11 | 2cn 9189 | . . . . 5 ⊢ 2 ∈ ℂ | |
| 12 | 11 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) |
| 13 | 1ap2 9326 | . . . . . 6 ⊢ 1 # 2 | |
| 14 | apsym 8761 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℂ) → (1 # 2 ↔ 2 # 1)) | |
| 15 | 1, 11, 14 | mp2an 426 | . . . . . 6 ⊢ (1 # 2 ↔ 2 # 1) |
| 16 | 13, 15 | mpbi 145 | . . . . 5 ⊢ 2 # 1 |
| 17 | 16 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 # 1) |
| 18 | nnnn0 9384 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 19 | 12, 17, 18 | geoserap 12026 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
| 20 | 10, 19 | eqtrid 2274 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
| 21 | 2nn 9280 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 22 | nnexpcl 10782 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ) | |
| 23 | 21, 18, 22 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
| 24 | 23 | nncnd 9132 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ) |
| 25 | subcl 8353 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑁) − 1) ∈ ℂ) | |
| 26 | 24, 1, 25 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℂ) |
| 27 | 1 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) |
| 28 | 1ap0 8745 | . . . . 5 ⊢ 1 # 0 | |
| 29 | 28 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 # 0) |
| 30 | 26, 27, 29 | div2negapd 8960 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
| 31 | negsubdi2 8413 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) | |
| 32 | 24, 1, 31 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
| 33 | df-neg 8328 | . . . . . 6 ⊢ -1 = (0 − 1) | |
| 34 | 0cn 8146 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 35 | pnpcan 8393 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + 0) − (1 + 1)) = (0 − 1)) | |
| 36 | 1, 34, 1, 35 | mp3an 1371 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (0 − 1) |
| 37 | 1p0e1 9234 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
| 38 | 1p1e2 9235 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
| 39 | 37, 38 | oveq12i 6019 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (1 − 2) |
| 40 | 33, 36, 39 | 3eqtr2i 2256 | . . . . 5 ⊢ -1 = (1 − 2) |
| 41 | 40 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → -1 = (1 − 2)) |
| 42 | 32, 41 | oveq12d 6025 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
| 43 | 26 | div1d 8935 | . . 3 ⊢ (𝑁 ∈ ℕ → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
| 44 | 30, 42, 43 | 3eqtr3d 2270 | . 2 ⊢ (𝑁 ∈ ℕ → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
| 45 | 5, 20, 44 | 3eqtrd 2266 | 1 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℂcc 8005 0cc0 8007 1c1 8008 + caddc 8010 − cmin 8325 -cneg 8326 # cap 8736 / cdiv 8827 ℕcn 9118 2c2 9169 ℕ0cn0 9377 ℝ+crp 9857 ...cfz 10212 ↑cexp 10768 Σcsu 11872 ℙcprime 12637 ↑𝑐ccxp 15539 σ csgm 15663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 ax-pre-suploc 8128 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-2o 6569 df-oadd 6572 df-er 6688 df-map 6805 df-pm 6806 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-xnn0 9441 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-ioo 10096 df-ico 10098 df-icc 10099 df-fz 10213 df-fzo 10347 df-fl 10498 df-mod 10553 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-bc 10978 df-ihash 11006 df-shft 11334 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ef 12167 df-e 12168 df-dvds 12307 df-gcd 12483 df-prm 12638 df-pc 12816 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-ntr 14778 df-cn 14870 df-cnp 14871 df-tx 14935 df-cncf 15253 df-limced 15338 df-dvap 15339 df-relog 15540 df-rpcxp 15541 df-sgm 15664 |
| This theorem is referenced by: perfect1 15680 perfectlem1 15681 perfectlem2 15682 |
| Copyright terms: Public domain | W3C validator |