![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1sgm2ppw | GIF version |
Description: The sum of the divisors of 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
1sgm2ppw | ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7970 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 2prm 12271 | . . 3 ⊢ 2 ∈ ℙ | |
3 | nnm1nn0 9287 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
4 | sgmppw 15200 | . . 3 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℙ ∧ (𝑁 − 1) ∈ ℕ0) → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) | |
5 | 1, 2, 3, 4 | mp3an12i 1352 | . 2 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘)) |
6 | 2rp 9730 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
7 | rpcxp1 15108 | . . . . . 6 ⊢ (2 ∈ ℝ+ → (2↑𝑐1) = 2) | |
8 | 6, 7 | mp1i 10 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → (2↑𝑐1) = 2) |
9 | 8 | oveq1d 5937 | . . . 4 ⊢ (𝑘 ∈ (0...(𝑁 − 1)) → ((2↑𝑐1)↑𝑘) = (2↑𝑘)) |
10 | 9 | sumeq2i 11513 | . . 3 ⊢ Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) |
11 | 2cn 9058 | . . . . 5 ⊢ 2 ∈ ℂ | |
12 | 11 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℂ) |
13 | 1ap2 9195 | . . . . . 6 ⊢ 1 # 2 | |
14 | apsym 8630 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℂ) → (1 # 2 ↔ 2 # 1)) | |
15 | 1, 11, 14 | mp2an 426 | . . . . . 6 ⊢ (1 # 2 ↔ 2 # 1) |
16 | 13, 15 | mpbi 145 | . . . . 5 ⊢ 2 # 1 |
17 | 16 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 2 # 1) |
18 | nnnn0 9253 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
19 | 12, 17, 18 | geoserap 11656 | . . 3 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
20 | 10, 19 | eqtrid 2241 | . 2 ⊢ (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))((2↑𝑐1)↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
21 | 2nn 9149 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
22 | nnexpcl 10629 | . . . . . . 7 ⊢ ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ) | |
23 | 21, 18, 22 | sylancr 414 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ) |
24 | 23 | nncnd 9001 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ) |
25 | subcl 8223 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑁) − 1) ∈ ℂ) | |
26 | 24, 1, 25 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℂ) |
27 | 1 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) |
28 | 1ap0 8614 | . . . . 5 ⊢ 1 # 0 | |
29 | 28 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → 1 # 0) |
30 | 26, 27, 29 | div2negapd 8829 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
31 | negsubdi2 8283 | . . . . 5 ⊢ (((2↑𝑁) ∈ ℂ ∧ 1 ∈ ℂ) → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) | |
32 | 24, 1, 31 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
33 | df-neg 8198 | . . . . . 6 ⊢ -1 = (0 − 1) | |
34 | 0cn 8016 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
35 | pnpcan 8263 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + 0) − (1 + 1)) = (0 − 1)) | |
36 | 1, 34, 1, 35 | mp3an 1348 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (0 − 1) |
37 | 1p0e1 9103 | . . . . . . 7 ⊢ (1 + 0) = 1 | |
38 | 1p1e2 9104 | . . . . . . 7 ⊢ (1 + 1) = 2 | |
39 | 37, 38 | oveq12i 5934 | . . . . . 6 ⊢ ((1 + 0) − (1 + 1)) = (1 − 2) |
40 | 33, 36, 39 | 3eqtr2i 2223 | . . . . 5 ⊢ -1 = (1 − 2) |
41 | 40 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ → -1 = (1 − 2)) |
42 | 32, 41 | oveq12d 5940 | . . 3 ⊢ (𝑁 ∈ ℕ → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
43 | 26 | div1d 8804 | . . 3 ⊢ (𝑁 ∈ ℕ → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
44 | 30, 42, 43 | 3eqtr3d 2237 | . 2 ⊢ (𝑁 ∈ ℕ → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
45 | 5, 20, 44 | 3eqtrd 2233 | 1 ⊢ (𝑁 ∈ ℕ → (1 σ (2↑(𝑁 − 1))) = ((2↑𝑁) − 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℂcc 7875 0cc0 7877 1c1 7878 + caddc 7880 − cmin 8195 -cneg 8196 # cap 8605 / cdiv 8696 ℕcn 8987 2c2 9038 ℕ0cn0 9246 ℝ+crp 9725 ...cfz 10080 ↑cexp 10615 Σcsu 11502 ℙcprime 12251 ↑𝑐ccxp 15066 σ csgm 15189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 ax-caucvg 7997 ax-pre-suploc 7998 ax-addf 7999 ax-mulf 8000 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-2o 6475 df-oadd 6478 df-er 6592 df-map 6709 df-pm 6710 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7048 df-inf 7049 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-n0 9247 df-xnn0 9310 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-xneg 9844 df-xadd 9845 df-ioo 9964 df-ico 9966 df-icc 9967 df-fz 10081 df-fzo 10215 df-fl 10345 df-mod 10400 df-seqfrec 10525 df-exp 10616 df-fac 10803 df-bc 10825 df-ihash 10853 df-shft 10965 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-clim 11428 df-sumdc 11503 df-ef 11797 df-e 11798 df-dvds 11937 df-gcd 12086 df-prm 12252 df-pc 12430 df-rest 12888 df-topgen 12907 df-psmet 14075 df-xmet 14076 df-met 14077 df-bl 14078 df-mopn 14079 df-top 14210 df-topon 14223 df-bases 14255 df-ntr 14308 df-cn 14400 df-cnp 14401 df-tx 14465 df-cncf 14783 df-limced 14868 df-dvap 14869 df-relog 15067 df-rpcxp 15068 df-sgm 15190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |