Proof of Theorem ccatopth2
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 5588 |
. . . 4
⊢ ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷))) |
| 2 | | ccatlen 11069 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| 3 | 2 | 3ad2ant1 1021 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵))) |
| 4 | | simp3 1002 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐵) = (♯‘𝐷)) |
| 5 | 4 | oveq2d 5972 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((♯‘𝐴) + (♯‘𝐵)) = ((♯‘𝐴) + (♯‘𝐷))) |
| 6 | 3, 5 | eqtrd 2239 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐷))) |
| 7 | | ccatlen 11069 |
. . . . . . 7
⊢ ((𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷))) |
| 8 | 7 | 3ad2ant2 1022 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘(𝐶 ++ 𝐷)) = ((♯‘𝐶) + (♯‘𝐷))) |
| 9 | 6, 8 | eqeq12d 2221 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷)) ↔ ((♯‘𝐴) + (♯‘𝐷)) = ((♯‘𝐶) + (♯‘𝐷)))) |
| 10 | | simp1l 1024 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → 𝐴 ∈ Word 𝑋) |
| 11 | | lencl 11015 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑋 → (♯‘𝐴) ∈
ℕ0) |
| 12 | 10, 11 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐴) ∈
ℕ0) |
| 13 | 12 | nn0cnd 9365 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐴) ∈ ℂ) |
| 14 | | simp2l 1026 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → 𝐶 ∈ Word 𝑋) |
| 15 | | lencl 11015 |
. . . . . . . 8
⊢ (𝐶 ∈ Word 𝑋 → (♯‘𝐶) ∈
ℕ0) |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐶) ∈
ℕ0) |
| 17 | 16 | nn0cnd 9365 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐶) ∈ ℂ) |
| 18 | | simp2r 1027 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → 𝐷 ∈ Word 𝑋) |
| 19 | | lencl 11015 |
. . . . . . . 8
⊢ (𝐷 ∈ Word 𝑋 → (♯‘𝐷) ∈
ℕ0) |
| 20 | 18, 19 | syl 14 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐷) ∈
ℕ0) |
| 21 | 20 | nn0cnd 9365 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (♯‘𝐷) ∈ ℂ) |
| 22 | 13, 17, 21 | addcan2d 8272 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → (((♯‘𝐴) + (♯‘𝐷)) = ((♯‘𝐶) + (♯‘𝐷)) ↔ (♯‘𝐴) = (♯‘𝐶))) |
| 23 | 9, 22 | bitrd 188 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((♯‘(𝐴 ++ 𝐵)) = (♯‘(𝐶 ++ 𝐷)) ↔ (♯‘𝐴) = (♯‘𝐶))) |
| 24 | 1, 23 | imbitrid 154 |
. . 3
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (♯‘𝐴) = (♯‘𝐶))) |
| 25 | | ccatopth 11187 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 26 | 25 | biimpd 144 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐴) = (♯‘𝐶)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 27 | 26 | 3expia 1208 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋)) → ((♯‘𝐴) = (♯‘𝐶) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 28 | 27 | com23 78 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((♯‘𝐴) = (♯‘𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 29 | 28 | 3adant3 1020 |
. . 3
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → ((♯‘𝐴) = (♯‘𝐶) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 30 | 24, 29 | mpdd 41 |
. 2
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 31 | | oveq12 5965 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 ++ 𝐵) = (𝐶 ++ 𝐷)) |
| 32 | 30, 31 | impbid1 142 |
1
⊢ (((𝐴 ∈ Word 𝑋 ∧ 𝐵 ∈ Word 𝑋) ∧ (𝐶 ∈ Word 𝑋 ∧ 𝐷 ∈ Word 𝑋) ∧ (♯‘𝐵) = (♯‘𝐷)) → ((𝐴 ++ 𝐵) = (𝐶 ++ 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |