ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abs3lem GIF version

Theorem abs3lem 11068
Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
Assertion
Ref Expression
abs3lem (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷))

Proof of Theorem abs3lem
StepHypRef Expression
1 simplll 528 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → 𝐴 ∈ ℂ)
2 simpllr 529 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → 𝐵 ∈ ℂ)
31, 2subcld 8223 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (𝐴𝐵) ∈ ℂ)
4 abscl 11008 . . . 4 ((𝐴𝐵) ∈ ℂ → (abs‘(𝐴𝐵)) ∈ ℝ)
53, 4syl 14 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (abs‘(𝐴𝐵)) ∈ ℝ)
6 simplrl 530 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → 𝐶 ∈ ℂ)
71, 6subcld 8223 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (𝐴𝐶) ∈ ℂ)
8 abscl 11008 . . . . 5 ((𝐴𝐶) ∈ ℂ → (abs‘(𝐴𝐶)) ∈ ℝ)
97, 8syl 14 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (abs‘(𝐴𝐶)) ∈ ℝ)
106, 2subcld 8223 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (𝐶𝐵) ∈ ℂ)
11 abscl 11008 . . . . 5 ((𝐶𝐵) ∈ ℂ → (abs‘(𝐶𝐵)) ∈ ℝ)
1210, 11syl 14 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (abs‘(𝐶𝐵)) ∈ ℝ)
139, 12readdcld 7942 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))) ∈ ℝ)
14 simplrr 531 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → 𝐷 ∈ ℝ)
15 abs3dif 11062 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
161, 2, 6, 15syl3anc 1233 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
17 simprl 526 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (abs‘(𝐴𝐶)) < (𝐷 / 2))
18 simprr 527 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (abs‘(𝐶𝐵)) < (𝐷 / 2))
199, 12, 14, 17, 18lt2halvesd 9118 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))) < 𝐷)
205, 13, 14, 16, 19lelttrd 8037 . 2 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) ∧ ((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2))) → (abs‘(𝐴𝐵)) < 𝐷)
2120ex 114 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141   class class class wbr 3987  cfv 5196  (class class class)co 5851  cc 7765  cr 7766   + caddc 7770   < clt 7947  cle 7948  cmin 8083   / cdiv 8582  2c2 8922  abscabs 10954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-rp 9604  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956
This theorem is referenced by:  cau3  11072  abs3lemi  11114  abs3lemd  11158  climuni  11249  2clim  11257  addcn2  11266  mulcn2  11268
  Copyright terms: Public domain W3C validator