| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lswex | GIF version | ||
| Description: Existence of the last symbol. The last symbol of a word is a set. See lsw0g 11079 or lswcl 11081 if you want more specific results for empty or nonempty words, respectively. (Contributed by Jim Kingdon, 27-Dec-2025.) |
| Ref | Expression |
|---|---|
| lswex | ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5599 | . . . 4 ⊢ (𝑊 = ∅ → (lastS‘𝑊) = (lastS‘∅)) | |
| 2 | lsw0g 11079 | . . . . 5 ⊢ (lastS‘∅) = ∅ | |
| 3 | 0ex 4187 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | eqeltri 2280 | . . . 4 ⊢ (lastS‘∅) ∈ V |
| 5 | 1, 4 | eqeltrdi 2298 | . . 3 ⊢ (𝑊 = ∅ → (lastS‘𝑊) ∈ V) |
| 6 | 5 | adantl 277 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 = ∅) → (lastS‘𝑊) ∈ V) |
| 7 | lswcl 11081 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) ∈ 𝑉) | |
| 8 | 7 | elexd 2790 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) ∈ V) |
| 9 | wrdfin 11050 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin) | |
| 10 | fin0or 7009 | . . 3 ⊢ (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝑊)) | |
| 11 | n0r 3482 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝑊 → 𝑊 ≠ ∅) | |
| 12 | 11 | orim2i 763 | . . 3 ⊢ ((𝑊 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅)) |
| 13 | 9, 10, 12 | 3syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ ∨ 𝑊 ≠ ∅)) |
| 14 | 6, 8, 13 | mpjaodan 800 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2178 ≠ wne 2378 Vcvv 2776 ∅c0 3468 ‘cfv 5290 Fincfn 6850 Word cword 11031 lastSclsw 11075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-ihash 10958 df-word 11032 df-lsw 11076 |
| This theorem is referenced by: pfxsuff1eqwrdeq 11190 |
| Copyright terms: Public domain | W3C validator |