| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lswex | GIF version | ||
| Description: Existence of the last symbol. The last symbol of a word is a set. See lsw0g 11044 or lswcl 11046 if you want more specific results for empty or nonempty words, respectively. (Contributed by Jim Kingdon, 27-Dec-2025.) |
| Ref | Expression |
|---|---|
| lswex | ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5578 | . . . 4 ⊢ (𝑊 = ∅ → (lastS‘𝑊) = (lastS‘∅)) | |
| 2 | lsw0g 11044 | . . . . 5 ⊢ (lastS‘∅) = ∅ | |
| 3 | 0ex 4172 | . . . . 5 ⊢ ∅ ∈ V | |
| 4 | 2, 3 | eqeltri 2278 | . . . 4 ⊢ (lastS‘∅) ∈ V |
| 5 | 1, 4 | eqeltrdi 2296 | . . 3 ⊢ (𝑊 = ∅ → (lastS‘𝑊) ∈ V) |
| 6 | 5 | adantl 277 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 = ∅) → (lastS‘𝑊) ∈ V) |
| 7 | lswcl 11046 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) ∈ 𝑉) | |
| 8 | 7 | elexd 2785 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) ∈ V) |
| 9 | wrdfin 11015 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 ∈ Fin) | |
| 10 | fin0or 6985 | . . 3 ⊢ (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝑊)) | |
| 11 | n0r 3474 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝑊 → 𝑊 ≠ ∅) | |
| 12 | 11 | orim2i 763 | . . 3 ⊢ ((𝑊 = ∅ ∨ ∃𝑥 𝑥 ∈ 𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅)) |
| 13 | 9, 10, 12 | 3syl 17 | . 2 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ ∨ 𝑊 ≠ ∅)) |
| 14 | 6, 8, 13 | mpjaodan 800 | 1 ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ≠ wne 2376 Vcvv 2772 ∅c0 3460 ‘cfv 5272 Fincfn 6829 Word cword 10996 lastSclsw 11040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-1o 6504 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-fz 10133 df-fzo 10267 df-ihash 10923 df-word 10997 df-lsw 11041 |
| This theorem is referenced by: pfxsuff1eqwrdeq 11153 |
| Copyright terms: Public domain | W3C validator |