ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdswrd GIF version

Theorem swrdswrd 11164
Description: A subword of a subword is a subword. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
Assertion
Ref Expression
swrdswrd ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))

Proof of Theorem swrdswrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 𝑊 ∈ Word 𝑉)
2 elfzelz 10154 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
323ad2ant3 1023 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℤ)
4 elfzel2 10152 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
543ad2ant3 1023 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
6 swrdclg 11111 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
71, 3, 5, 6syl3anc 1250 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
87adantr 276 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
9 elfz0ubfz0 10254 . . . . 5 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → 𝐾 ∈ (0...𝐿))
109adantl 277 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐾 ∈ (0...𝐿))
11 elfzuz 10150 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ (ℤ‘0))
1211adantl 277 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → 𝐾 ∈ (ℤ‘0))
13 fzss1 10192 . . . . . . . 8 (𝐾 ∈ (ℤ‘0) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
1412, 13syl 14 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
1514sseld 3193 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ (0...(𝑁𝑀))))
1615impr 379 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(𝑁𝑀)))
17 3ancomb 989 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ↔ (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
1817biimpi 120 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
1918adantr 276 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
20 swrdlen 11113 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
2119, 20syl 14 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
2221oveq2d 5967 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))) = (0...(𝑁𝑀)))
2316, 22eleqtrrd 2286 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩))))
24 swrdval2 11112 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉𝐾 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘(𝑊 substr ⟨𝑀, 𝑁⟩)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
258, 10, 23, 24syl3anc 1250 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
261ad2antrr 488 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → 𝑊 ∈ Word 𝑉)
273ad2antrr 488 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → 𝑀 ∈ ℤ)
285ad2antrr 488 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → 𝑁 ∈ ℤ)
2926, 27, 28, 6syl3anc 1250 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
30 elfzoelz 10276 . . . . . . . . 9 (𝑥 ∈ (0..^(𝐿𝐾)) → 𝑥 ∈ ℤ)
3130adantl 277 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → 𝑥 ∈ ℤ)
32 elfzelz 10154 . . . . . . . . . 10 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℤ)
3332ad2antrl 490 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐾 ∈ ℤ)
3433adantr 276 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → 𝐾 ∈ ℤ)
3531, 34zaddcld 9506 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑥 + 𝐾) ∈ ℤ)
36 fvexg 5602 . . . . . . 7 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉 ∧ (𝑥 + 𝐾) ∈ ℤ) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) ∈ V)
3729, 35, 36syl2anc 411 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) ∈ V)
3837ralrimiva 2580 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ∀𝑥 ∈ (0..^(𝐿𝐾))((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) ∈ V)
39 eqid 2206 . . . . . 6 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))
4039fnmpt 5408 . . . . 5 (∀𝑥 ∈ (0..^(𝐿𝐾))((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) ∈ V → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾)))
4138, 40syl 14 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾)))
42 swrdswrdlem 11163 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
43 swrdvalfn 11117 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4442, 43syl 14 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
45 elfzelz 10154 . . . . . . . . . . 11 (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ ℤ)
46 zcn 9384 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4746adantr 276 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈ ℂ)
48 zcn 9384 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
4948ad2antrl 490 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐿 ∈ ℂ)
50 zcn 9384 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
5150ad2antll 491 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℂ)
52 pnpcan 8318 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑀 + 𝐿) − (𝑀 + 𝐾)) = (𝐿𝐾))
5352eqcomd 2212 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
5447, 49, 51, 53syl3anc 1250 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
5554expcom 116 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
5645, 32, 55syl2anr 290 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
572, 56syl5com 29 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
58573ad2ant3 1023 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
5958imp 124 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
6059oveq2d 5967 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
6160fneq2d 5370 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)) ↔ (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
6244, 61mpbird 167 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)))
63 eqid 2206 . . . . . . 7 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))
64 oveq1 5958 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 + 𝐾) = (𝑦 + 𝐾))
6564fvoveq1d 5973 . . . . . . 7 (𝑥 = 𝑦 → (𝑊‘((𝑥 + 𝐾) + 𝑀)) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
66 simpr 110 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^(𝐿𝐾)))
671ad2antrr 488 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑊 ∈ Word 𝑉)
68 elfzoelz 10276 . . . . . . . . . . 11 (𝑦 ∈ (0..^(𝐿𝐾)) → 𝑦 ∈ ℤ)
6968adantl 277 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ ℤ)
7033adantr 276 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝐾 ∈ ℤ)
7169, 70zaddcld 9506 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑦 + 𝐾) ∈ ℤ)
723ad2antrr 488 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑀 ∈ ℤ)
7371, 72zaddcld 9506 . . . . . . . 8 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑦 + 𝐾) + 𝑀) ∈ ℤ)
74 fvexg 5602 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((𝑦 + 𝐾) + 𝑀) ∈ ℤ) → (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V)
7567, 73, 74syl2anc 411 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V)
7663, 65, 66, 75fvmptd3 5680 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
77 zcn 9384 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7877, 46, 503anim123i 1187 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
79783expa 1206 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
80 add32r 8239 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑦 + (𝑀 + 𝐾)) = ((𝑦 + 𝐾) + 𝑀))
8180eqcomd 2212 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
8279, 81syl 14 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
8382exp31 364 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
8483com13 80 . . . . . . . . . . . . 13 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
8532, 84syl 14 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
8685adantr 276 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
872, 86syl5com 29 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
88873ad2ant3 1023 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
8988imp 124 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))
9089, 68impel 280 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
9190fveq2d 5587 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊‘((𝑦 + 𝐾) + 𝑀)) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
9276, 91eqtrd 2239 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
9318ad3antrrr 492 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))))
94 elfz2nn0 10241 . . . . . . . . . . . . 13 (𝐾 ∈ (0...(𝑁𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)))
95 elfz2 10144 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (𝐾...(𝑁𝑀)) ↔ ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))))
96 elfzo0 10313 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0..^(𝐿𝐾)) ↔ (𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)))
97 nn0re 9311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
9897ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝑥 ∈ ℝ)
99 nn0re 9311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
10099adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
101 zre 9383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
102101ad2antll 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
103 ltaddsub 8516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑥 + 𝐾) < 𝐿𝑥 < (𝐿𝐾)))
104103bicomd 141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
10598, 100, 102, 104syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
106 nn0addcl 9337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℕ0)
107106ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
108107adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
109108impcom 125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℕ0)
110109ad3antrrr 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ ℕ0)
111 elnn0z 9392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 + 𝐾) ∈ ℕ0 ↔ ((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)))
112 0red 8080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
113 zre 9383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑥 + 𝐾) ∈ ℤ → (𝑥 + 𝐾) ∈ ℝ)
114113adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑥 + 𝐾) ∈ ℝ)
115101adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
116 lelttr 8168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((0 ∈ ℝ ∧ (𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
117112, 114, 115, 116syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
118 0red 8080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 0 ∈ ℝ)
119101adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 𝐿 ∈ ℝ)
120 nn0re 9311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ0 → (𝑁𝑀) ∈ ℝ)
121120adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (𝑁𝑀) ∈ ℝ)
122 ltletr 8169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
123118, 119, 121, 122syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
124 elnnnn0b 9346 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ ↔ ((𝑁𝑀) ∈ ℕ0 ∧ 0 < (𝑁𝑀)))
125124simplbi2 385 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁𝑀) ∈ ℕ0 → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
126125adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
127123, 126syld 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ))
128127exp4b 367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐿 ∈ ℤ → ((𝑁𝑀) ∈ ℕ0 → (0 < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
129128com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐿 ∈ ℤ → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
130129adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
131117, 130syld 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
132131expd 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
133132a1d 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
134133ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 + 𝐾) ∈ ℤ → (𝐿 ∈ ℤ → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
135134com24 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 + 𝐾) ∈ ℤ → (0 ≤ (𝑥 + 𝐾) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
136135imp 124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
137111, 136sylbi 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 + 𝐾) ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
138106, 137mpcom 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
139138impancom 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
140139impcom 125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
141140imp41 353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ)
142 nn0readdcl 9361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℝ)
143142ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
144143adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
145144impcom 125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℝ)
146 ltletr 8169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
147145, 102, 120, 146syl2an3an 1311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑁𝑀) ∈ ℕ0) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
148147exp4b 367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑁𝑀) ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
149148com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
150149imp41 353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀))
151 elfzo0 10313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)) ↔ ((𝑥 + 𝐾) ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ (𝑥 + 𝐾) < (𝑁𝑀)))
152110, 141, 150, 151syl3anbrc 1184 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
153152exp41 370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
154105, 153sylbid 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
155154ex 115 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
156155com24 87 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ0 → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
157156imp 124 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
158157com13 80 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
159158impancom 260 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1601593adant2 1019 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
16196, 160sylbi 121 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0..^(𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
162161com14 88 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
163162adantl 277 . . . . . . . . . . . . . . . . . . 19 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
164163com12 30 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1651643ad2ant3 1023 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
166165imp 124 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
16795, 166sylbi 121 . . . . . . . . . . . . . . 15 (𝐿 ∈ (𝐾...(𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
168167com12 30 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
1691683adant3 1020 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
17094, 169sylbi 121 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
171170imp 124 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
172171adantl 277 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
173172adantr 276 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
174173imp 124 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
175 swrdfv 11114 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) ∧ (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
17693, 174, 175syl2anc 411 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
177176mpteq2dva 4138 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))))
178177fveq1d 5585 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦))
17942adantr 276 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))))
18046, 48, 503anim123i 1187 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
1811803expa 1206 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
182181, 53syl 14 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
183182exp31 364 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
184183com3l 81 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
18545, 184syl 14 . . . . . . . . . . . . 13 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
18632, 185mpan9 281 . . . . . . . . . . . 12 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
1872, 186syl5com 29 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
1881873ad2ant3 1023 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
189188imp 124 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
190189oveq2d 5967 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
191190eleq2d 2276 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ (0..^(𝐿𝐾)) ↔ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
192191biimpa 296 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
193 swrdfv 11114 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(♯‘𝑊))) ∧ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
194179, 192, 193syl2anc 411 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
19592, 178, 1943eqtr4d 2249 . . . 4 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦))
19641, 62, 195eqfnfvd 5687 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
19725, 196eqtrd 2239 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
198197ex 115 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  wss 3167  cop 3637   class class class wbr 4047  cmpt 4109   Fn wfn 5271  cfv 5276  (class class class)co 5951  cc 7930  cr 7931  0cc0 7932   + caddc 7935   < clt 8114  cle 8115  cmin 8250  cn 9043  0cn0 9302  cz 9379  cuz 9655  ...cfz 10137  ..^cfzo 10271  chash 10927  Word cword 11001   substr csubstr 11106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-fzo 10272  df-ihash 10928  df-word 11002  df-substr 11107
This theorem is referenced by:  pfxswrd  11165  swrdpfx  11166
  Copyright terms: Public domain W3C validator