| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrbagfi | GIF version | ||
| Description: A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagfi | ⊢ (𝐼 ∈ Fin → 𝐷 = (ℕ0 ↑𝑚 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | elmapi 6787 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 𝐼) → 𝑓:𝐼⟶ℕ0) | |
| 3 | 2 | fdmd 5456 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 𝐼) → dom 𝑓 = 𝐼) |
| 4 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → dom 𝑓 = 𝐼) |
| 5 | simpl 109 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → 𝐼 ∈ Fin) | |
| 6 | 4, 5 | eqeltrd 2286 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → dom 𝑓 ∈ Fin) |
| 7 | cnvimass 5067 | . . . . . 6 ⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 | |
| 8 | 7 | a1i 9 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → (◡𝑓 “ ℕ) ⊆ dom 𝑓) |
| 9 | 2 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑓:𝐼⟶ℕ0) |
| 10 | simpr 110 | . . . . . . . . . . 11 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ dom 𝑓) | |
| 11 | 3 | ad2antlr 489 | . . . . . . . . . . 11 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → dom 𝑓 = 𝐼) |
| 12 | 10, 11 | eleqtrd 2288 | . . . . . . . . . 10 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ 𝐼) |
| 13 | 9, 12 | ffvelcdmd 5744 | . . . . . . . . 9 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ ℕ0) |
| 14 | 13 | nn0zd 9535 | . . . . . . . 8 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ ℤ) |
| 15 | elnndc 9775 | . . . . . . . 8 ⊢ ((𝑓‘𝑥) ∈ ℤ → DECID (𝑓‘𝑥) ∈ ℕ) | |
| 16 | 14, 15 | syl 14 | . . . . . . 7 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → DECID (𝑓‘𝑥) ∈ ℕ) |
| 17 | elmapfn 6788 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 𝐼) → 𝑓 Fn 𝐼) | |
| 18 | 17 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑓 Fn 𝐼) |
| 19 | elpreima 5727 | . . . . . . . . . 10 ⊢ (𝑓 Fn 𝐼 → (𝑥 ∈ (◡𝑓 “ ℕ) ↔ (𝑥 ∈ 𝐼 ∧ (𝑓‘𝑥) ∈ ℕ))) | |
| 20 | 18, 19 | syl 14 | . . . . . . . . 9 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑥 ∈ (◡𝑓 “ ℕ) ↔ (𝑥 ∈ 𝐼 ∧ (𝑓‘𝑥) ∈ ℕ))) |
| 21 | 12, 20 | mpbirand 441 | . . . . . . . 8 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑥 ∈ (◡𝑓 “ ℕ) ↔ (𝑓‘𝑥) ∈ ℕ)) |
| 22 | 21 | dcbid 842 | . . . . . . 7 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (DECID 𝑥 ∈ (◡𝑓 “ ℕ) ↔ DECID (𝑓‘𝑥) ∈ ℕ)) |
| 23 | 16, 22 | mpbird 167 | . . . . . 6 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → DECID 𝑥 ∈ (◡𝑓 “ ℕ)) |
| 24 | 23 | ralrimiva 2583 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → ∀𝑥 ∈ dom 𝑓DECID 𝑥 ∈ (◡𝑓 “ ℕ)) |
| 25 | ssfidc 7067 | . . . . 5 ⊢ ((dom 𝑓 ∈ Fin ∧ (◡𝑓 “ ℕ) ⊆ dom 𝑓 ∧ ∀𝑥 ∈ dom 𝑓DECID 𝑥 ∈ (◡𝑓 “ ℕ)) → (◡𝑓 “ ℕ) ∈ Fin) | |
| 26 | 6, 8, 24, 25 | syl3anc 1252 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → (◡𝑓 “ ℕ) ∈ Fin) |
| 27 | 26 | ralrimiva 2583 | . . 3 ⊢ (𝐼 ∈ Fin → ∀𝑓 ∈ (ℕ0 ↑𝑚 𝐼)(◡𝑓 “ ℕ) ∈ Fin) |
| 28 | rabid2 2688 | . . 3 ⊢ ((ℕ0 ↑𝑚 𝐼) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0 ↑𝑚 𝐼)(◡𝑓 “ ℕ) ∈ Fin) | |
| 29 | 27, 28 | sylibr 134 | . 2 ⊢ (𝐼 ∈ Fin → (ℕ0 ↑𝑚 𝐼) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 30 | 1, 29 | eqtr4id 2261 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 = (ℕ0 ↑𝑚 𝐼)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 838 = wceq 1375 ∈ wcel 2180 ∀wral 2488 {crab 2492 ⊆ wss 3177 ◡ccnv 4695 dom cdm 4696 “ cima 4699 Fn wfn 5289 ⟶wf 5290 ‘cfv 5294 (class class class)co 5974 ↑𝑚 cmap 6765 Fincfn 6857 ℕcn 9078 ℕ0cn0 9337 ℤcz 9414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1o 6532 df-er 6650 df-map 6767 df-en 6858 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 |
| This theorem is referenced by: psrelbasfi 14605 mplsubgfilemm 14627 mpl0fi 14631 |
| Copyright terms: Public domain | W3C validator |