| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > psrbagfi | GIF version | ||
| Description: A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagfi | ⊢ (𝐼 ∈ Fin → 𝐷 = (ℕ0 ↑𝑚 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | . 2 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | elmapi 6764 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 𝐼) → 𝑓:𝐼⟶ℕ0) | |
| 3 | 2 | fdmd 5438 | . . . . . . 7 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 𝐼) → dom 𝑓 = 𝐼) |
| 4 | 3 | adantl 277 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → dom 𝑓 = 𝐼) |
| 5 | simpl 109 | . . . . . 6 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → 𝐼 ∈ Fin) | |
| 6 | 4, 5 | eqeltrd 2283 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → dom 𝑓 ∈ Fin) |
| 7 | cnvimass 5050 | . . . . . 6 ⊢ (◡𝑓 “ ℕ) ⊆ dom 𝑓 | |
| 8 | 7 | a1i 9 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → (◡𝑓 “ ℕ) ⊆ dom 𝑓) |
| 9 | 2 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑓:𝐼⟶ℕ0) |
| 10 | simpr 110 | . . . . . . . . . . 11 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ dom 𝑓) | |
| 11 | 3 | ad2antlr 489 | . . . . . . . . . . 11 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → dom 𝑓 = 𝐼) |
| 12 | 10, 11 | eleqtrd 2285 | . . . . . . . . . 10 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ 𝐼) |
| 13 | 9, 12 | ffvelcdmd 5723 | . . . . . . . . 9 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ ℕ0) |
| 14 | 13 | nn0zd 9500 | . . . . . . . 8 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓‘𝑥) ∈ ℤ) |
| 15 | elnndc 9740 | . . . . . . . 8 ⊢ ((𝑓‘𝑥) ∈ ℤ → DECID (𝑓‘𝑥) ∈ ℕ) | |
| 16 | 14, 15 | syl 14 | . . . . . . 7 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → DECID (𝑓‘𝑥) ∈ ℕ) |
| 17 | elmapfn 6765 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℕ0 ↑𝑚 𝐼) → 𝑓 Fn 𝐼) | |
| 18 | 17 | ad2antlr 489 | . . . . . . . . . 10 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑓 Fn 𝐼) |
| 19 | elpreima 5706 | . . . . . . . . . 10 ⊢ (𝑓 Fn 𝐼 → (𝑥 ∈ (◡𝑓 “ ℕ) ↔ (𝑥 ∈ 𝐼 ∧ (𝑓‘𝑥) ∈ ℕ))) | |
| 20 | 18, 19 | syl 14 | . . . . . . . . 9 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑥 ∈ (◡𝑓 “ ℕ) ↔ (𝑥 ∈ 𝐼 ∧ (𝑓‘𝑥) ∈ ℕ))) |
| 21 | 12, 20 | mpbirand 441 | . . . . . . . 8 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑥 ∈ (◡𝑓 “ ℕ) ↔ (𝑓‘𝑥) ∈ ℕ)) |
| 22 | 21 | dcbid 840 | . . . . . . 7 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (DECID 𝑥 ∈ (◡𝑓 “ ℕ) ↔ DECID (𝑓‘𝑥) ∈ ℕ)) |
| 23 | 16, 22 | mpbird 167 | . . . . . 6 ⊢ (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → DECID 𝑥 ∈ (◡𝑓 “ ℕ)) |
| 24 | 23 | ralrimiva 2580 | . . . . 5 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → ∀𝑥 ∈ dom 𝑓DECID 𝑥 ∈ (◡𝑓 “ ℕ)) |
| 25 | ssfidc 7041 | . . . . 5 ⊢ ((dom 𝑓 ∈ Fin ∧ (◡𝑓 “ ℕ) ⊆ dom 𝑓 ∧ ∀𝑥 ∈ dom 𝑓DECID 𝑥 ∈ (◡𝑓 “ ℕ)) → (◡𝑓 “ ℕ) ∈ Fin) | |
| 26 | 6, 8, 24, 25 | syl3anc 1250 | . . . 4 ⊢ ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0 ↑𝑚 𝐼)) → (◡𝑓 “ ℕ) ∈ Fin) |
| 27 | 26 | ralrimiva 2580 | . . 3 ⊢ (𝐼 ∈ Fin → ∀𝑓 ∈ (ℕ0 ↑𝑚 𝐼)(◡𝑓 “ ℕ) ∈ Fin) |
| 28 | rabid2 2684 | . . 3 ⊢ ((ℕ0 ↑𝑚 𝐼) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0 ↑𝑚 𝐼)(◡𝑓 “ ℕ) ∈ Fin) | |
| 29 | 27, 28 | sylibr 134 | . 2 ⊢ (𝐼 ∈ Fin → (ℕ0 ↑𝑚 𝐼) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 30 | 1, 29 | eqtr4id 2258 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 = (ℕ0 ↑𝑚 𝐼)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ⊆ wss 3167 ◡ccnv 4678 dom cdm 4679 “ cima 4682 Fn wfn 5271 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ↑𝑚 cmap 6742 Fincfn 6834 ℕcn 9043 ℕ0cn0 9302 ℤcz 9379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1o 6509 df-er 6627 df-map 6744 df-en 6835 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 df-uz 9656 |
| This theorem is referenced by: psrelbasfi 14482 mplsubgfilemm 14504 mpl0fi 14508 |
| Copyright terms: Public domain | W3C validator |