ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbagfi GIF version

Theorem psrbagfi 14602
Description: A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagfi (𝐼 ∈ Fin → 𝐷 = (ℕ0𝑚 𝐼))
Distinct variable group:   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psrbag.d . 2 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 elmapi 6787 . . . . . . . 8 (𝑓 ∈ (ℕ0𝑚 𝐼) → 𝑓:𝐼⟶ℕ0)
32fdmd 5456 . . . . . . 7 (𝑓 ∈ (ℕ0𝑚 𝐼) → dom 𝑓 = 𝐼)
43adantl 277 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) → dom 𝑓 = 𝐼)
5 simpl 109 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) → 𝐼 ∈ Fin)
64, 5eqeltrd 2286 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) → dom 𝑓 ∈ Fin)
7 cnvimass 5067 . . . . . 6 (𝑓 “ ℕ) ⊆ dom 𝑓
87a1i 9 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) → (𝑓 “ ℕ) ⊆ dom 𝑓)
92ad2antlr 489 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑓:𝐼⟶ℕ0)
10 simpr 110 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑥 ∈ dom 𝑓)
113ad2antlr 489 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → dom 𝑓 = 𝐼)
1210, 11eleqtrd 2288 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑥𝐼)
139, 12ffvelcdmd 5744 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ ℕ0)
1413nn0zd 9535 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑓𝑥) ∈ ℤ)
15 elnndc 9775 . . . . . . . 8 ((𝑓𝑥) ∈ ℤ → DECID (𝑓𝑥) ∈ ℕ)
1614, 15syl 14 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → DECID (𝑓𝑥) ∈ ℕ)
17 elmapfn 6788 . . . . . . . . . . 11 (𝑓 ∈ (ℕ0𝑚 𝐼) → 𝑓 Fn 𝐼)
1817ad2antlr 489 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → 𝑓 Fn 𝐼)
19 elpreima 5727 . . . . . . . . . 10 (𝑓 Fn 𝐼 → (𝑥 ∈ (𝑓 “ ℕ) ↔ (𝑥𝐼 ∧ (𝑓𝑥) ∈ ℕ)))
2018, 19syl 14 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑥 ∈ (𝑓 “ ℕ) ↔ (𝑥𝐼 ∧ (𝑓𝑥) ∈ ℕ)))
2112, 20mpbirand 441 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (𝑥 ∈ (𝑓 “ ℕ) ↔ (𝑓𝑥) ∈ ℕ))
2221dcbid 842 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → (DECID 𝑥 ∈ (𝑓 “ ℕ) ↔ DECID (𝑓𝑥) ∈ ℕ))
2316, 22mpbird 167 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) ∧ 𝑥 ∈ dom 𝑓) → DECID 𝑥 ∈ (𝑓 “ ℕ))
2423ralrimiva 2583 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) → ∀𝑥 ∈ dom 𝑓DECID 𝑥 ∈ (𝑓 “ ℕ))
25 ssfidc 7067 . . . . 5 ((dom 𝑓 ∈ Fin ∧ (𝑓 “ ℕ) ⊆ dom 𝑓 ∧ ∀𝑥 ∈ dom 𝑓DECID 𝑥 ∈ (𝑓 “ ℕ)) → (𝑓 “ ℕ) ∈ Fin)
266, 8, 24, 25syl3anc 1252 . . . 4 ((𝐼 ∈ Fin ∧ 𝑓 ∈ (ℕ0𝑚 𝐼)) → (𝑓 “ ℕ) ∈ Fin)
2726ralrimiva 2583 . . 3 (𝐼 ∈ Fin → ∀𝑓 ∈ (ℕ0𝑚 𝐼)(𝑓 “ ℕ) ∈ Fin)
28 rabid2 2688 . . 3 ((ℕ0𝑚 𝐼) = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ ∀𝑓 ∈ (ℕ0𝑚 𝐼)(𝑓 “ ℕ) ∈ Fin)
2927, 28sylibr 134 . 2 (𝐼 ∈ Fin → (ℕ0𝑚 𝐼) = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
301, 29eqtr4id 2261 1 (𝐼 ∈ Fin → 𝐷 = (ℕ0𝑚 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 838   = wceq 1375  wcel 2180  wral 2488  {crab 2492  wss 3177  ccnv 4695  dom cdm 4696  cima 4699   Fn wfn 5289  wf 5290  cfv 5294  (class class class)co 5974  𝑚 cmap 6765  Fincfn 6857  cn 9078  0cn0 9337  cz 9414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1o 6532  df-er 6650  df-map 6767  df-en 6858  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691
This theorem is referenced by:  psrelbasfi  14605  mplsubgfilemm  14627  mpl0fi  14631
  Copyright terms: Public domain W3C validator