| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uspgr2wlkeq2 | GIF version | ||
| Description: Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.) |
| Ref | Expression |
|---|---|
| uspgr2wlkeq2 | ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → ((2nd ‘𝐴) = (2nd ‘𝐵) → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . . 6 ⊢ ((𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁) → (♯‘(1st ‘𝐵)) = 𝑁) | |
| 2 | 1 | eqcomd 2235 | . . . . 5 ⊢ ((𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁) → 𝑁 = (♯‘(1st ‘𝐵))) |
| 3 | 2 | 3ad2ant3 1044 | . . . 4 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → 𝑁 = (♯‘(1st ‘𝐵))) |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝑁 = (♯‘(1st ‘𝐵))) |
| 5 | fveq1 5626 | . . . . 5 ⊢ ((2nd ‘𝐴) = (2nd ‘𝐵) → ((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)) | |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → ((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)) |
| 7 | 6 | ralrimivw 2604 | . . 3 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → ∀𝑖 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)) |
| 8 | simpl1l 1072 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝐺 ∈ USPGraph) | |
| 9 | simpl 109 | . . . . . . 7 ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) → 𝐴 ∈ (Walks‘𝐺)) | |
| 10 | simpl 109 | . . . . . . 7 ⊢ ((𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁) → 𝐵 ∈ (Walks‘𝐺)) | |
| 11 | 9, 10 | anim12i 338 | . . . . . 6 ⊢ (((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) |
| 12 | 11 | 3adant1 1039 | . . . . 5 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) |
| 13 | 12 | adantr 276 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺))) |
| 14 | simpr 110 | . . . . . . 7 ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) → (♯‘(1st ‘𝐴)) = 𝑁) | |
| 15 | 14 | eqcomd 2235 | . . . . . 6 ⊢ ((𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) → 𝑁 = (♯‘(1st ‘𝐴))) |
| 16 | 15 | 3ad2ant2 1043 | . . . . 5 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → 𝑁 = (♯‘(1st ‘𝐴))) |
| 17 | 16 | adantr 276 | . . . 4 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝑁 = (♯‘(1st ‘𝐴))) |
| 18 | uspgr2wlkeq 16076 | . . . 4 ⊢ ((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (♯‘(1st ‘𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)))) | |
| 19 | 8, 13, 17, 18 | syl3anc 1271 | . . 3 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → (𝐴 = 𝐵 ↔ (𝑁 = (♯‘(1st ‘𝐵)) ∧ ∀𝑖 ∈ (0...𝑁)((2nd ‘𝐴)‘𝑖) = ((2nd ‘𝐵)‘𝑖)))) |
| 20 | 4, 7, 19 | mpbir2and 950 | . 2 ⊢ ((((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)) → 𝐴 = 𝐵) |
| 21 | 20 | ex 115 | 1 ⊢ (((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (♯‘(1st ‘𝐵)) = 𝑁)) → ((2nd ‘𝐴) = (2nd ‘𝐵) → 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5318 (class class class)co 6001 1st c1st 6284 2nd c2nd 6285 0cc0 7999 ℕ0cn0 9369 ...cfz 10204 ♯chash 10997 USPGraphcuspgr 15951 Walkscwlks 16030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-ifp 984 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-2o 6563 df-er 6680 df-map 6797 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-z 9447 df-dec 9579 df-uz 9723 df-fz 10205 df-fzo 10339 df-ihash 10998 df-word 11072 df-ndx 13035 df-slot 13036 df-base 13038 df-edgf 15806 df-vtx 15815 df-iedg 15816 df-edg 15859 df-uhgrm 15869 df-upgren 15893 df-uspgren 15953 df-wlks 16031 |
| This theorem is referenced by: uspgr2wlkeqi 16078 |
| Copyright terms: Public domain | W3C validator |