MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcongi Structured version   Visualization version   GIF version

Theorem mndodcongi 19449
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcongi ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcongi
StepHypRef Expression
1 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
3 odid.3 . . . . . 6 · = (.g𝐺)
4 odid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4mndodcong 19448 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
65biimpd 229 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
763expia 1121 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
873impa 1109 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
9 nn0z 12530 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 nn0z 12530 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 zsubcl 12551 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
129, 10, 11syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℤ)
13123ad2ant3 1135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀𝑁) ∈ ℤ)
14 0dvds 16222 . . . . 5 ((𝑀𝑁) ∈ ℤ → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
1513, 14syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
16 nn0cn 12428 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
17 nn0cn 12428 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
18 subeq0 11424 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1916, 17, 18syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
20193ad2ant3 1135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
21 oveq1 7376 . . . . 5 (𝑀 = 𝑁 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2220, 21biimtrdi 253 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
2315, 22sylbid 240 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
24 breq1 5105 . . . 4 ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ 0 ∥ (𝑀𝑁)))
2524imbi1d 341 . . 3 ((𝑂𝐴) = 0 → (((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ↔ (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
2623, 25syl5ibrcom 247 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
271, 2odcl 19442 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
28273ad2ant2 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑂𝐴) ∈ ℕ0)
29 elnn0 12420 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
3028, 29sylib 218 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
318, 26, 30mpjaod 860 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  cmin 11381  cn 12162  0cn0 12418  cz 12505  cdvds 16198  Basecbs 17155  0gc0g 17378  Mndcmnd 18637  .gcmg 18975  odcod 19430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fl 13730  df-mod 13808  df-seq 13943  df-dvds 16199  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mulg 18976  df-od 19434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator