| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndodcongi | Structured version Visualization version GIF version | ||
| Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| Ref | Expression |
|---|---|
| odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
| odid.3 | ⊢ · = (.g‘𝐺) |
| odid.4 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndodcongi | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | odcl.2 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
| 3 | odid.3 | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 4 | odid.4 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 5 | 1, 2, 3, 4 | mndodcong 19421 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 6 | 5 | biimpd 229 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 7 | 6 | 3expia 1121 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∈ ℕ → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 8 | 7 | 3impa 1109 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∈ ℕ → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 9 | nn0z 12496 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
| 10 | nn0z 12496 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 11 | zsubcl 12517 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 − 𝑁) ∈ ℤ) |
| 13 | 12 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 − 𝑁) ∈ ℤ) |
| 14 | 0dvds 16187 | . . . . 5 ⊢ ((𝑀 − 𝑁) ∈ ℤ → (0 ∥ (𝑀 − 𝑁) ↔ (𝑀 − 𝑁) = 0)) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (0 ∥ (𝑀 − 𝑁) ↔ (𝑀 − 𝑁) = 0)) |
| 16 | nn0cn 12394 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
| 17 | nn0cn 12394 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 18 | subeq0 11390 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) | |
| 19 | 16, 17, 18 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) |
| 20 | 19 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) |
| 21 | oveq1 7356 | . . . . 5 ⊢ (𝑀 = 𝑁 → (𝑀 · 𝐴) = (𝑁 · 𝐴)) | |
| 22 | 20, 21 | biimtrdi 253 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑀 − 𝑁) = 0 → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 23 | 15, 22 | sylbid 240 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (0 ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 24 | breq1 5095 | . . . 4 ⊢ ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ 0 ∥ (𝑀 − 𝑁))) | |
| 25 | 24 | imbi1d 341 | . . 3 ⊢ ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ↔ (0 ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 26 | 23, 25 | syl5ibrcom 247 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 27 | 1, 2 | odcl 19415 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
| 28 | 27 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑂‘𝐴) ∈ ℕ0) |
| 29 | elnn0 12386 | . . 3 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 31 | 8, 26, 30 | mpjaod 860 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 − cmin 11347 ℕcn 12128 ℕ0cn0 12384 ℤcz 12471 ∥ cdvds 16163 Basecbs 17120 0gc0g 17343 Mndcmnd 18608 .gcmg 18946 odcod 19403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fl 13696 df-mod 13774 df-seq 13909 df-dvds 16164 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mulg 18947 df-od 19407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |