MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcongi Structured version   Visualization version   GIF version

Theorem mndodcongi 19455
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcongi ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcongi
StepHypRef Expression
1 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
3 odid.3 . . . . . 6 · = (.g𝐺)
4 odid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4mndodcong 19454 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
65biimpd 229 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
763expia 1121 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
873impa 1109 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
9 nn0z 12493 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 nn0z 12493 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 zsubcl 12514 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
129, 10, 11syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℤ)
13123ad2ant3 1135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀𝑁) ∈ ℤ)
14 0dvds 16187 . . . . 5 ((𝑀𝑁) ∈ ℤ → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
1513, 14syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
16 nn0cn 12391 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
17 nn0cn 12391 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
18 subeq0 11387 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1916, 17, 18syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
20193ad2ant3 1135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
21 oveq1 7353 . . . . 5 (𝑀 = 𝑁 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2220, 21biimtrdi 253 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
2315, 22sylbid 240 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
24 breq1 5092 . . . 4 ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ 0 ∥ (𝑀𝑁)))
2524imbi1d 341 . . 3 ((𝑂𝐴) = 0 → (((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ↔ (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
2623, 25syl5ibrcom 247 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
271, 2odcl 19448 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
28273ad2ant2 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑂𝐴) ∈ ℕ0)
29 elnn0 12383 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
3028, 29sylib 218 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
318, 26, 30mpjaod 860 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  cmin 11344  cn 12125  0cn0 12381  cz 12468  cdvds 16163  Basecbs 17120  0gc0g 17343  Mndcmnd 18642  .gcmg 18980  odcod 19436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-dvds 16164  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mulg 18981  df-od 19440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator