MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcongi Structured version   Visualization version   GIF version

Theorem mndodcongi 19278
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcongi ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcongi
StepHypRef Expression
1 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
3 odid.3 . . . . . 6 · = (.g𝐺)
4 odid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4mndodcong 19277 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
65biimpd 228 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
763expia 1121 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
873impa 1110 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
9 nn0z 12482 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 nn0z 12482 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 zsubcl 12503 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
129, 10, 11syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℤ)
13123ad2ant3 1135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀𝑁) ∈ ℤ)
14 0dvds 16113 . . . . 5 ((𝑀𝑁) ∈ ℤ → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
1513, 14syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
16 nn0cn 12381 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
17 nn0cn 12381 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
18 subeq0 11385 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1916, 17, 18syl2an 596 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
20193ad2ant3 1135 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
21 oveq1 7358 . . . . 5 (𝑀 = 𝑁 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2220, 21syl6bi 252 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
2315, 22sylbid 239 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
24 breq1 5106 . . . 4 ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ 0 ∥ (𝑀𝑁)))
2524imbi1d 341 . . 3 ((𝑂𝐴) = 0 → (((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ↔ (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
2623, 25syl5ibrcom 246 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
271, 2odcl 19271 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
28273ad2ant2 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑂𝐴) ∈ ℕ0)
29 elnn0 12373 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
3028, 29sylib 217 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
318, 26, 30mpjaod 858 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5103  cfv 6493  (class class class)co 7351  cc 11007  0cc0 11009  cmin 11343  cn 12111  0cn0 12371  cz 12457  cdvds 16090  Basecbs 17037  0gc0g 17275  Mndcmnd 18510  .gcmg 18825  odcod 19259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-om 7795  df-1st 7913  df-2nd 7914  df-frecs 8204  df-wrecs 8235  df-recs 8309  df-rdg 8348  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-sup 9336  df-inf 9337  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-nn 12112  df-n0 12372  df-z 12458  df-uz 12722  df-rp 12870  df-fz 13379  df-fl 13651  df-mod 13729  df-seq 13861  df-dvds 16091  df-0g 17277  df-mgm 18451  df-sgrp 18500  df-mnd 18511  df-mulg 18826  df-od 19263
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator