| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndodcongi | Structured version Visualization version GIF version | ||
| Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.) |
| Ref | Expression |
|---|---|
| odcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
| odcl.2 | ⊢ 𝑂 = (od‘𝐺) |
| odid.3 | ⊢ · = (.g‘𝐺) |
| odid.4 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndodcongi | ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | odcl.2 | . . . . . 6 ⊢ 𝑂 = (od‘𝐺) | |
| 3 | odid.3 | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 4 | odid.4 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 5 | 1, 2, 3, 4 | mndodcong 19454 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 6 | 5 | biimpd 229 | . . . 4 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑂‘𝐴) ∈ ℕ) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 7 | 6 | 3expia 1121 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∈ ℕ → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 8 | 7 | 3impa 1109 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∈ ℕ → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 9 | nn0z 12493 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ) | |
| 10 | nn0z 12493 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 11 | zsubcl 12514 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 − 𝑁) ∈ ℤ) |
| 13 | 12 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 − 𝑁) ∈ ℤ) |
| 14 | 0dvds 16187 | . . . . 5 ⊢ ((𝑀 − 𝑁) ∈ ℤ → (0 ∥ (𝑀 − 𝑁) ↔ (𝑀 − 𝑁) = 0)) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (0 ∥ (𝑀 − 𝑁) ↔ (𝑀 − 𝑁) = 0)) |
| 16 | nn0cn 12391 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℂ) | |
| 17 | nn0cn 12391 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 18 | subeq0 11387 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) | |
| 19 | 16, 17, 18 | syl2an 596 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) |
| 20 | 19 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) |
| 21 | oveq1 7353 | . . . . 5 ⊢ (𝑀 = 𝑁 → (𝑀 · 𝐴) = (𝑁 · 𝐴)) | |
| 22 | 20, 21 | biimtrdi 253 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑀 − 𝑁) = 0 → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 23 | 15, 22 | sylbid 240 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (0 ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| 24 | breq1 5092 | . . . 4 ⊢ ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) ↔ 0 ∥ (𝑀 − 𝑁))) | |
| 25 | 24 | imbi1d 341 | . . 3 ⊢ ((𝑂‘𝐴) = 0 → (((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ↔ (0 ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 26 | 23, 25 | syl5ibrcom 247 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) = 0 → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))) |
| 27 | 1, 2 | odcl 19448 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈ ℕ0) |
| 28 | 27 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑂‘𝐴) ∈ ℕ0) |
| 29 | elnn0 12383 | . . 3 ⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) | |
| 30 | 28, 29 | sylib 218 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 31 | 8, 26, 30 | mpjaod 860 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝑂‘𝐴) ∥ (𝑀 − 𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ∥ cdvds 16163 Basecbs 17120 0gc0g 17343 Mndcmnd 18642 .gcmg 18980 odcod 19436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-dvds 16164 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mulg 18981 df-od 19440 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |