MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdvds Structured version   Visualization version   GIF version

Theorem rpdvds 16589
Description: If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) = 1)

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝐾 ∈ ℤ)
2 simpl2 1193 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑀 ∈ ℤ)
3 gcddvds 16432 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
41, 2, 3syl2anc 584 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
54simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝐾)
6 ax-1ne0 11097 . . . . . . . . . 10 1 ≠ 0
7 simprl 770 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑁) = 1)
87neeq1d 2984 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑁) ≠ 0 ↔ 1 ≠ 0))
96, 8mpbiri 258 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑁) ≠ 0)
109neneqd 2930 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 gcd 𝑁) = 0)
11 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝐾 = 0)
12 simprr 772 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀 = 0)
13 simplrr 777 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀𝑁)
1412, 13eqbrtrrd 5119 . . . . . . . . . . . 12 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 0 ∥ 𝑁)
15 simpll3 1215 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 ∈ ℤ)
16 0dvds 16205 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1715, 16syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (0 ∥ 𝑁𝑁 = 0))
1814, 17mpbid 232 . . . . . . . . . . 11 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 = 0)
1911, 18jca 511 . . . . . . . . . 10 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 = 0 ∧ 𝑁 = 0))
2019ex 412 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 = 0 ∧ 𝑁 = 0)))
21 simpl3 1194 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑁 ∈ ℤ)
22 gcdeq0 16446 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0)))
231, 21, 22syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0)))
2420, 23sylibrd 259 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 gcd 𝑁) = 0))
2510, 24mtod 198 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 = 0 ∧ 𝑀 = 0))
26 gcdn0cl 16431 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ (𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 gcd 𝑀) ∈ ℕ)
271, 2, 25, 26syl21anc 837 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∈ ℕ)
2827nnzd 12516 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∈ ℤ)
294simprd 495 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑀)
30 simprr 772 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑀𝑁)
3128, 2, 21, 29, 30dvdstrd 16224 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑁)
3210, 23mtbid 324 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 = 0 ∧ 𝑁 = 0))
33 dvdslegcd 16433 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐾 = 0 ∧ 𝑁 = 0)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁)))
3428, 1, 21, 32, 33syl31anc 1375 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁)))
355, 31, 34mp2and 699 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁))
3635, 7breqtrd 5121 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ≤ 1)
37 nnle1eq1 12176 . . 3 ((𝐾 gcd 𝑀) ∈ ℕ → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1))
3827, 37syl 17 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1))
3936, 38mpbid 232 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  (class class class)co 7353  0cc0 11028  1c1 11029  cle 11169  cn 12146  cz 12489  cdvds 16181   gcd cgcd 16423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424
This theorem is referenced by:  pgpfac1lem2  19974  mpodvdsmulf1o  27120  dvdsmulf1o  27122  lgsquad2lem2  27312  aks6d1c1  42089  aks6d1c4  42097  aks5  42177
  Copyright terms: Public domain W3C validator