MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdvds Structured version   Visualization version   GIF version

Theorem rpdvds 16563
Description: If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) = 1)

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 1192 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝐾 ∈ ℤ)
2 simpl2 1193 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑀 ∈ ℤ)
3 gcddvds 16406 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
41, 2, 3syl2anc 584 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
54simpld 494 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝐾)
6 ax-1ne0 11067 . . . . . . . . . 10 1 ≠ 0
7 simprl 770 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑁) = 1)
87neeq1d 2985 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑁) ≠ 0 ↔ 1 ≠ 0))
96, 8mpbiri 258 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑁) ≠ 0)
109neneqd 2931 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 gcd 𝑁) = 0)
11 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝐾 = 0)
12 simprr 772 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀 = 0)
13 simplrr 777 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀𝑁)
1412, 13eqbrtrrd 5113 . . . . . . . . . . . 12 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 0 ∥ 𝑁)
15 simpll3 1215 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 ∈ ℤ)
16 0dvds 16179 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1715, 16syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (0 ∥ 𝑁𝑁 = 0))
1814, 17mpbid 232 . . . . . . . . . . 11 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 = 0)
1911, 18jca 511 . . . . . . . . . 10 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 = 0 ∧ 𝑁 = 0))
2019ex 412 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 = 0 ∧ 𝑁 = 0)))
21 simpl3 1194 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑁 ∈ ℤ)
22 gcdeq0 16420 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0)))
231, 21, 22syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0)))
2420, 23sylibrd 259 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 gcd 𝑁) = 0))
2510, 24mtod 198 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 = 0 ∧ 𝑀 = 0))
26 gcdn0cl 16405 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ (𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 gcd 𝑀) ∈ ℕ)
271, 2, 25, 26syl21anc 837 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∈ ℕ)
2827nnzd 12487 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∈ ℤ)
294simprd 495 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑀)
30 simprr 772 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑀𝑁)
3128, 2, 21, 29, 30dvdstrd 16198 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑁)
3210, 23mtbid 324 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 = 0 ∧ 𝑁 = 0))
33 dvdslegcd 16407 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐾 = 0 ∧ 𝑁 = 0)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁)))
3428, 1, 21, 32, 33syl31anc 1375 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁)))
355, 31, 34mp2and 699 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁))
3635, 7breqtrd 5115 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ≤ 1)
37 nnle1eq1 12147 . . 3 ((𝐾 gcd 𝑀) ∈ ℕ → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1))
3827, 37syl 17 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1))
3936, 38mpbid 232 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926   class class class wbr 5089  (class class class)co 7341  0cc0 10998  1c1 10999  cle 11139  cn 12117  cz 12460  cdvds 16155   gcd cgcd 16397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-dvds 16156  df-gcd 16398
This theorem is referenced by:  pgpfac1lem2  19982  mpodvdsmulf1o  27124  dvdsmulf1o  27126  lgsquad2lem2  27316  aks6d1c1  42128  aks6d1c4  42136  aks5  42216
  Copyright terms: Public domain W3C validator