![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsabsb | Structured version Visualization version GIF version |
Description: An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdsabsb | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4968 | . . . 4 ⊢ ((abs‘𝑁) = 𝑁 → (𝑀 ∥ (abs‘𝑁) ↔ 𝑀 ∥ 𝑁)) | |
2 | 1 | bicomd 224 | . . 3 ⊢ ((abs‘𝑁) = 𝑁 → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = 𝑁 → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁)))) |
4 | dvdsnegb 15460 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ -𝑁)) | |
5 | breq2 4968 | . . . . 5 ⊢ ((abs‘𝑁) = -𝑁 → (𝑀 ∥ (abs‘𝑁) ↔ 𝑀 ∥ -𝑁)) | |
6 | 5 | bicomd 224 | . . . 4 ⊢ ((abs‘𝑁) = -𝑁 → (𝑀 ∥ -𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) |
7 | 4, 6 | sylan9bb 510 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑁) = -𝑁) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) |
8 | 7 | ex 413 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = -𝑁 → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁)))) |
9 | zre 11835 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
10 | 9 | absord 14609 | . . 3 ⊢ (𝑁 ∈ ℤ → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) |
11 | 10 | adantl 482 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁)) |
12 | 3, 8, 11 | mpjaod 855 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (abs‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ wo 842 = wceq 1522 ∈ wcel 2080 class class class wbr 4964 ‘cfv 6228 -cneg 10720 ℤcz 11831 abscabs 14427 ∥ cdvds 15440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 ax-pre-sup 10464 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-sup 8755 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-div 11148 df-nn 11489 df-2 11550 df-3 11551 df-n0 11748 df-z 11832 df-uz 12094 df-rp 12240 df-seq 13220 df-exp 13280 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-dvds 15441 |
This theorem is referenced by: dvdsleabs 15494 fzocongeq 15507 divalglem0 15577 divalglem2 15579 bezoutlem4 15719 dvdssq 15740 lcmcllem 15769 lcmdvds 15781 lcmgcdeq 15785 absproddvds 15790 mulgcddvds 15828 pc2dvds 16044 4sqlem11 16120 lgsdirprm 25589 lgsne0 25593 lgsqr 25609 2sqblem 25689 etransclem41 42116 etransclem44 42119 |
Copyright terms: Public domain | W3C validator |