Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvds Structured version   Visualization version   GIF version

Theorem fsumdvds 15714
 Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
fsumdvds.1 (𝜑𝐴 ∈ Fin)
fsumdvds.2 (𝜑𝑁 ∈ ℤ)
fsumdvds.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fsumdvds.4 ((𝜑𝑘𝐴) → 𝑁𝐵)
Assertion
Ref Expression
fsumdvds (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumdvds
StepHypRef Expression
1 0z 12036 . . . 4 0 ∈ ℤ
2 dvds0 15678 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
31, 2mp1i 13 . . 3 ((𝜑𝑁 = 0) → 0 ∥ 0)
4 simpr 488 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
5 simplr 768 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁 = 0)
6 fsumdvds.4 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝑁𝐵)
76adantlr 714 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁𝐵)
85, 7eqbrtrrd 5059 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 0 ∥ 𝐵)
9 fsumdvds.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
109adantlr 714 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
11 0dvds 15683 . . . . . . 7 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1210, 11syl 17 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → (0 ∥ 𝐵𝐵 = 0))
138, 12mpbid 235 . . . . 5 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 = 0)
1413sumeq2dv 15113 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
15 fsumdvds.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
1615adantr 484 . . . . . 6 ((𝜑𝑁 = 0) → 𝐴 ∈ Fin)
1716olcd 871 . . . . 5 ((𝜑𝑁 = 0) → (𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin))
18 sumz 15132 . . . . 5 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
1917, 18syl 17 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 0 = 0)
2014, 19eqtrd 2793 . . 3 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = 0)
213, 4, 203brtr4d 5067 . 2 ((𝜑𝑁 = 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
2215adantr 484 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝐴 ∈ Fin)
23 fsumdvds.2 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2423adantr 484 . . . . . 6 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℤ)
2524zcnd 12132 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℂ)
269adantlr 714 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
2726zcnd 12132 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simpr 488 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ≠ 0)
2922, 25, 27, 28fsumdivc 15194 . . . 4 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) = Σ𝑘𝐴 (𝐵 / 𝑁))
306adantlr 714 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁𝐵)
3124adantr 484 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ∈ ℤ)
32 simplr 768 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ≠ 0)
33 dvdsval2 15663 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3431, 32, 26, 33syl3anc 1368 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3530, 34mpbid 235 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝐵 / 𝑁) ∈ ℤ)
3622, 35fsumzcl 15145 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 (𝐵 / 𝑁) ∈ ℤ)
3729, 36eqeltrd 2852 . . 3 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ)
3815, 9fsumzcl 15145 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
3938adantr 484 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 𝐵 ∈ ℤ)
40 dvdsval2 15663 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4124, 28, 39, 40syl3anc 1368 . . 3 ((𝜑𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4237, 41mpbird 260 . 2 ((𝜑𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
4321, 42pm2.61dane 3038 1 (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   ⊆ wss 3860   class class class wbr 5035  ‘cfv 6339  (class class class)co 7155  Fincfn 8532  0cc0 10580   / cdiv 11340  ℤcz 12025  ℤ≥cuz 12287  Σcsu 15095   ∥ cdvds 15660 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-inf2 9142  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-oi 9012  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-fz 12945  df-fzo 13088  df-seq 13424  df-exp 13485  df-hash 13746  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-clim 14898  df-sum 15096  df-dvds 15661 This theorem is referenced by:  3dvds  15737  sylow1lem3  18797  sylow2alem2  18815  poimirlem26  35389  poimirlem27  35390  etransclem37  43307  etransclem38  43308  etransclem44  43314
 Copyright terms: Public domain W3C validator