MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvds Structured version   Visualization version   GIF version

Theorem fsumdvds 15652
Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
fsumdvds.1 (𝜑𝐴 ∈ Fin)
fsumdvds.2 (𝜑𝑁 ∈ ℤ)
fsumdvds.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fsumdvds.4 ((𝜑𝑘𝐴) → 𝑁𝐵)
Assertion
Ref Expression
fsumdvds (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumdvds
StepHypRef Expression
1 0z 11986 . . . 4 0 ∈ ℤ
2 dvds0 15619 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
31, 2mp1i 13 . . 3 ((𝜑𝑁 = 0) → 0 ∥ 0)
4 simpr 487 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
5 simplr 767 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁 = 0)
6 fsumdvds.4 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝑁𝐵)
76adantlr 713 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁𝐵)
85, 7eqbrtrrd 5082 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 0 ∥ 𝐵)
9 fsumdvds.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
109adantlr 713 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
11 0dvds 15624 . . . . . . 7 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1210, 11syl 17 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → (0 ∥ 𝐵𝐵 = 0))
138, 12mpbid 234 . . . . 5 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 = 0)
1413sumeq2dv 15054 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
15 fsumdvds.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
1615adantr 483 . . . . . 6 ((𝜑𝑁 = 0) → 𝐴 ∈ Fin)
1716olcd 870 . . . . 5 ((𝜑𝑁 = 0) → (𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin))
18 sumz 15073 . . . . 5 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
1917, 18syl 17 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 0 = 0)
2014, 19eqtrd 2856 . . 3 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = 0)
213, 4, 203brtr4d 5090 . 2 ((𝜑𝑁 = 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
2215adantr 483 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝐴 ∈ Fin)
23 fsumdvds.2 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2423adantr 483 . . . . . 6 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℤ)
2524zcnd 12082 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℂ)
269adantlr 713 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
2726zcnd 12082 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simpr 487 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ≠ 0)
2922, 25, 27, 28fsumdivc 15135 . . . 4 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) = Σ𝑘𝐴 (𝐵 / 𝑁))
306adantlr 713 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁𝐵)
3124adantr 483 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ∈ ℤ)
32 simplr 767 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ≠ 0)
33 dvdsval2 15604 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3431, 32, 26, 33syl3anc 1367 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3530, 34mpbid 234 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝐵 / 𝑁) ∈ ℤ)
3622, 35fsumzcl 15086 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 (𝐵 / 𝑁) ∈ ℤ)
3729, 36eqeltrd 2913 . . 3 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ)
3815, 9fsumzcl 15086 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
3938adantr 483 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 𝐵 ∈ ℤ)
40 dvdsval2 15604 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4124, 28, 39, 40syl3anc 1367 . . 3 ((𝜑𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4237, 41mpbird 259 . 2 ((𝜑𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
4321, 42pm2.61dane 3104 1 (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wss 3935   class class class wbr 5058  cfv 6349  (class class class)co 7150  Fincfn 8503  0cc0 10531   / cdiv 11291  cz 11975  cuz 12237  Σcsu 15036  cdvds 15601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602
This theorem is referenced by:  3dvds  15674  sylow1lem3  18719  sylow2alem2  18737  poimirlem26  34912  poimirlem27  34913  etransclem37  42550  etransclem38  42551  etransclem44  42557
  Copyright terms: Public domain W3C validator