![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumdvds | Structured version Visualization version GIF version |
Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.) |
Ref | Expression |
---|---|
fsumdvds.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumdvds.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumdvds.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
fsumdvds.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
Ref | Expression |
---|---|
fsumdvds | ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | dvds0 16320 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
3 | 1, 2 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 0 ∥ 0) |
4 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
5 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 = 0) | |
6 | fsumdvds.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) | |
7 | 6 | adantlr 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
8 | 5, 7 | eqbrtrrd 5190 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 0 ∥ 𝐵) |
9 | fsumdvds.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) | |
10 | 9 | adantlr 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
11 | 0dvds 16325 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (0 ∥ 𝐵 ↔ 𝐵 = 0)) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → (0 ∥ 𝐵 ↔ 𝐵 = 0)) |
13 | 8, 12 | mpbid 232 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 = 0) |
14 | 13 | sumeq2dv 15750 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 0) |
15 | fsumdvds.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 ∈ Fin) |
17 | 16 | olcd 873 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐴 ⊆ (ℤ≥‘0) ∨ 𝐴 ∈ Fin)) |
18 | sumz 15770 | . . . . 5 ⊢ ((𝐴 ⊆ (ℤ≥‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 0 = 0) |
20 | 14, 19 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
21 | 3, 4, 20 | 3brtr4d 5198 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
22 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝐴 ∈ Fin) |
23 | fsumdvds.2 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
24 | 23 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) |
25 | 24 | zcnd 12748 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ) |
26 | 9 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
27 | 26 | zcnd 12748 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
28 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) | |
29 | 22, 25, 27, 28 | fsumdivc 15834 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝑁)) |
30 | 6 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
31 | 24 | adantr 480 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∈ ℤ) |
32 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ≠ 0) | |
33 | dvdsval2 16305 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ)) | |
34 | 31, 32, 26, 33 | syl3anc 1371 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → (𝑁 ∥ 𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ)) |
35 | 30, 34 | mpbid 232 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 / 𝑁) ∈ ℤ) |
36 | 22, 35 | fsumzcl 15783 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → Σ𝑘 ∈ 𝐴 (𝐵 / 𝑁) ∈ ℤ) |
37 | 29, 36 | eqeltrd 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ) |
38 | 15, 9 | fsumzcl 15783 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
39 | 38 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
40 | dvdsval2 16305 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵 ↔ (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ)) | |
41 | 24, 28, 39, 40 | syl3anc 1371 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵 ↔ (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ)) |
42 | 37, 41 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
43 | 21, 42 | pm2.61dane 3035 | 1 ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 0cc0 11184 / cdiv 11947 ℤcz 12639 ℤ≥cuz 12903 Σcsu 15734 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-dvds 16303 |
This theorem is referenced by: 3dvds 16379 sylow1lem3 19642 sylow2alem2 19660 poimirlem26 37606 poimirlem27 37607 etransclem37 46192 etransclem38 46193 etransclem44 46199 |
Copyright terms: Public domain | W3C validator |