MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvds Structured version   Visualization version   GIF version

Theorem fsumdvds 16211
Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
fsumdvds.1 (𝜑𝐴 ∈ Fin)
fsumdvds.2 (𝜑𝑁 ∈ ℤ)
fsumdvds.3 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
fsumdvds.4 ((𝜑𝑘𝐴) → 𝑁𝐵)
Assertion
Ref Expression
fsumdvds (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumdvds
StepHypRef Expression
1 0z 12471 . . . 4 0 ∈ ℤ
2 dvds0 16174 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
31, 2mp1i 13 . . 3 ((𝜑𝑁 = 0) → 0 ∥ 0)
4 simpr 484 . . 3 ((𝜑𝑁 = 0) → 𝑁 = 0)
5 simplr 768 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁 = 0)
6 fsumdvds.4 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝑁𝐵)
76adantlr 715 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝑁𝐵)
85, 7eqbrtrrd 5113 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 0 ∥ 𝐵)
9 fsumdvds.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)
109adantlr 715 . . . . . . 7 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
11 0dvds 16179 . . . . . . 7 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1210, 11syl 17 . . . . . 6 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → (0 ∥ 𝐵𝐵 = 0))
138, 12mpbid 232 . . . . 5 (((𝜑𝑁 = 0) ∧ 𝑘𝐴) → 𝐵 = 0)
1413sumeq2dv 15601 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 0)
15 fsumdvds.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
1615adantr 480 . . . . . 6 ((𝜑𝑁 = 0) → 𝐴 ∈ Fin)
1716olcd 874 . . . . 5 ((𝜑𝑁 = 0) → (𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin))
18 sumz 15621 . . . . 5 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
1917, 18syl 17 . . . 4 ((𝜑𝑁 = 0) → Σ𝑘𝐴 0 = 0)
2014, 19eqtrd 2765 . . 3 ((𝜑𝑁 = 0) → Σ𝑘𝐴 𝐵 = 0)
213, 4, 203brtr4d 5121 . 2 ((𝜑𝑁 = 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
2215adantr 480 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝐴 ∈ Fin)
23 fsumdvds.2 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2423adantr 480 . . . . . 6 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℤ)
2524zcnd 12570 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ∈ ℂ)
269adantlr 715 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℤ)
2726zcnd 12570 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simpr 484 . . . . 5 ((𝜑𝑁 ≠ 0) → 𝑁 ≠ 0)
2922, 25, 27, 28fsumdivc 15685 . . . 4 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) = Σ𝑘𝐴 (𝐵 / 𝑁))
306adantlr 715 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁𝐵)
3124adantr 480 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ∈ ℤ)
32 simplr 768 . . . . . . 7 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → 𝑁 ≠ 0)
33 dvdsval2 16158 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3431, 32, 26, 33syl3anc 1373 . . . . . 6 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝑁𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ))
3530, 34mpbid 232 . . . . 5 (((𝜑𝑁 ≠ 0) ∧ 𝑘𝐴) → (𝐵 / 𝑁) ∈ ℤ)
3622, 35fsumzcl 15634 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 (𝐵 / 𝑁) ∈ ℤ)
3729, 36eqeltrd 2829 . . 3 ((𝜑𝑁 ≠ 0) → (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ)
3815, 9fsumzcl 15634 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
3938adantr 480 . . . 4 ((𝜑𝑁 ≠ 0) → Σ𝑘𝐴 𝐵 ∈ ℤ)
40 dvdsval2 16158 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4124, 28, 39, 40syl3anc 1373 . . 3 ((𝜑𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘𝐴 𝐵 ↔ (Σ𝑘𝐴 𝐵 / 𝑁) ∈ ℤ))
4237, 41mpbird 257 . 2 ((𝜑𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘𝐴 𝐵)
4321, 42pm2.61dane 3013 1 (𝜑𝑁 ∥ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  wne 2926  wss 3900   class class class wbr 5089  cfv 6477  (class class class)co 7341  Fincfn 8864  0cc0 10998   / cdiv 11766  cz 12460  cuz 12724  Σcsu 15585  cdvds 16155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-dvds 16156
This theorem is referenced by:  3dvds  16234  sylow1lem3  19505  sylow2alem2  19523  poimirlem26  37665  poimirlem27  37666  etransclem37  46288  etransclem38  46289  etransclem44  46295
  Copyright terms: Public domain W3C validator