Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumdvds | Structured version Visualization version GIF version |
Description: If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.) |
Ref | Expression |
---|---|
fsumdvds.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumdvds.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
fsumdvds.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
fsumdvds.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
Ref | Expression |
---|---|
fsumdvds | ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12036 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | dvds0 15678 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
3 | 1, 2 | mp1i 13 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 0 ∥ 0) |
4 | simpr 488 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) | |
5 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 = 0) | |
6 | fsumdvds.4 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) | |
7 | 6 | adantlr 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
8 | 5, 7 | eqbrtrrd 5059 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 0 ∥ 𝐵) |
9 | fsumdvds.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) | |
10 | 9 | adantlr 714 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
11 | 0dvds 15683 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → (0 ∥ 𝐵 ↔ 𝐵 = 0)) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → (0 ∥ 𝐵 ↔ 𝐵 = 0)) |
13 | 8, 12 | mpbid 235 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 = 0) |
14 | 13 | sumeq2dv 15113 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝐴 0) |
15 | fsumdvds.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
16 | 15 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐴 ∈ Fin) |
17 | 16 | olcd 871 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐴 ⊆ (ℤ≥‘0) ∨ 𝐴 ∈ Fin)) |
18 | sumz 15132 | . . . . 5 ⊢ ((𝐴 ⊆ (ℤ≥‘0) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 0 = 0) |
20 | 14, 19 | eqtrd 2793 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → Σ𝑘 ∈ 𝐴 𝐵 = 0) |
21 | 3, 4, 20 | 3brtr4d 5067 | . 2 ⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
22 | 15 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝐴 ∈ Fin) |
23 | fsumdvds.2 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
24 | 23 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) |
25 | 24 | zcnd 12132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℂ) |
26 | 9 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) |
27 | 26 | zcnd 12132 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
28 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0) | |
29 | 22, 25, 27, 28 | fsumdivc 15194 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) = Σ𝑘 ∈ 𝐴 (𝐵 / 𝑁)) |
30 | 6 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) |
31 | 24 | adantr 484 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ∈ ℤ) |
32 | simplr 768 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → 𝑁 ≠ 0) | |
33 | dvdsval2 15663 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ)) | |
34 | 31, 32, 26, 33 | syl3anc 1368 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → (𝑁 ∥ 𝐵 ↔ (𝐵 / 𝑁) ∈ ℤ)) |
35 | 30, 34 | mpbid 235 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ≠ 0) ∧ 𝑘 ∈ 𝐴) → (𝐵 / 𝑁) ∈ ℤ) |
36 | 22, 35 | fsumzcl 15145 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → Σ𝑘 ∈ 𝐴 (𝐵 / 𝑁) ∈ ℤ) |
37 | 29, 36 | eqeltrd 2852 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ) |
38 | 15, 9 | fsumzcl 15145 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
39 | 38 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
40 | dvdsval2 15663 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ Σ𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵 ↔ (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ)) | |
41 | 24, 28, 39, 40 | syl3anc 1368 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → (𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵 ↔ (Σ𝑘 ∈ 𝐴 𝐵 / 𝑁) ∈ ℤ)) |
42 | 37, 41 | mpbird 260 | . 2 ⊢ ((𝜑 ∧ 𝑁 ≠ 0) → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
43 | 21, 42 | pm2.61dane 3038 | 1 ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ⊆ wss 3860 class class class wbr 5035 ‘cfv 6339 (class class class)co 7155 Fincfn 8532 0cc0 10580 / cdiv 11340 ℤcz 12025 ℤ≥cuz 12287 Σcsu 15095 ∥ cdvds 15660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-sup 8944 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-z 12026 df-uz 12288 df-rp 12436 df-fz 12945 df-fzo 13088 df-seq 13424 df-exp 13485 df-hash 13746 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-clim 14898 df-sum 15096 df-dvds 15661 |
This theorem is referenced by: 3dvds 15737 sylow1lem3 18797 sylow2alem2 18815 poimirlem26 35389 poimirlem27 35390 etransclem37 43307 etransclem38 43308 etransclem44 43314 |
Copyright terms: Public domain | W3C validator |