Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0noddALTV | Structured version Visualization version GIF version |
Description: 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) |
Ref | Expression |
---|---|
0noddALTV | ⊢ 0 ∉ Odd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0evenALTV 45151 | . 2 ⊢ 0 ∈ Even | |
2 | df-nel 3051 | . . 3 ⊢ (0 ∉ Odd ↔ ¬ 0 ∈ Odd ) | |
3 | 0z 12339 | . . . 4 ⊢ 0 ∈ ℤ | |
4 | zeo2ALTV 45134 | . . . . 5 ⊢ (0 ∈ ℤ → (0 ∈ Even ↔ ¬ 0 ∈ Odd )) | |
5 | 4 | bicomd 222 | . . . 4 ⊢ (0 ∈ ℤ → (¬ 0 ∈ Odd ↔ 0 ∈ Even )) |
6 | 3, 5 | ax-mp 5 | . . 3 ⊢ (¬ 0 ∈ Odd ↔ 0 ∈ Even ) |
7 | 2, 6 | bitri 274 | . 2 ⊢ (0 ∉ Odd ↔ 0 ∈ Even ) |
8 | 1, 7 | mpbir 230 | 1 ⊢ 0 ∉ Odd |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2107 ∉ wnel 3050 0cc0 10880 ℤcz 12328 Even ceven 45087 Odd codd 45088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-n0 12243 df-z 12329 df-even 45089 df-odd 45090 |
This theorem is referenced by: nn0o1gt2ALTV 45157 nn0oALTV 45159 |
Copyright terms: Public domain | W3C validator |