Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5grlic Structured version   Visualization version   GIF version

Theorem gpg5grlic 48078
Description: The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.)
Assertion
Ref Expression
gpg5grlic (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)

Proof of Theorem gpg5grlic
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 5eluz3 12820 . . . 4 5 ∈ (ℤ‘3)
2 3z 12544 . . . . . . 7 3 ∈ ℤ
3 1lt3 12332 . . . . . . 7 1 < 3
4 eluz2b1 12856 . . . . . . 7 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 1 < 3))
52, 3, 4mpbir2an 711 . . . . . 6 3 ∈ (ℤ‘2)
6 fzo1lb 13652 . . . . . 6 (1 ∈ (1..^3) ↔ 3 ∈ (ℤ‘2))
75, 6mpbir 231 . . . . 5 1 ∈ (1..^3)
8 ceil5half3 47335 . . . . . . 7 (⌈‘(5 / 2)) = 3
98eqcomi 2738 . . . . . 6 3 = (⌈‘(5 / 2))
109oveq2i 7380 . . . . 5 (1..^3) = (1..^(⌈‘(5 / 2)))
117, 10eleqtri 2826 . . . 4 1 ∈ (1..^(⌈‘(5 / 2)))
12 gpgusgra 48042 . . . 4 ((5 ∈ (ℤ‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph)
131, 11, 12mp2an 692 . . 3 (5 gPetersenGr 1) ∈ USGraph
14 pglem 48076 . . . 4 2 ∈ (1..^(⌈‘(5 / 2)))
15 gpgusgra 48042 . . . 4 ((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph)
161, 14, 15mp2an 692 . . 3 (5 gPetersenGr 2) ∈ USGraph
17 2eluzge1 12819 . . . . . 6 2 ∈ (ℤ‘1)
18 eluzfz1 13470 . . . . . 6 (2 ∈ (ℤ‘1) → 1 ∈ (1...2))
1917, 18ax-mp 5 . . . . 5 1 ∈ (1...2)
20 gpg5order 48045 . . . . 5 (1 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 1))) = 10)
2119, 20ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 1))) = 10
22 eluzfz2 13471 . . . . . 6 (2 ∈ (ℤ‘1) → 2 ∈ (1...2))
2317, 22ax-mp 5 . . . . 5 2 ∈ (1...2)
24 gpg5order 48045 . . . . 5 (2 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 2))) = 10)
2523, 24ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 2))) = 10
26 eqtr3 2751 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))))
27 fvex 6853 . . . . . . 7 (Vtx‘(5 gPetersenGr 1)) ∈ V
28 10nn0 12645 . . . . . . 7 10 ∈ ℕ0
29 hashvnfin 14303 . . . . . . 7 (((Vtx‘(5 gPetersenGr 1)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin))
3027, 28, 29mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin)
31 fvex 6853 . . . . . . 7 (Vtx‘(5 gPetersenGr 2)) ∈ V
32 hashvnfin 14303 . . . . . . 7 (((Vtx‘(5 gPetersenGr 2)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin))
3331, 28, 32mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin)
34 hashen 14290 . . . . . 6 (((Vtx‘(5 gPetersenGr 1)) ∈ Fin ∧ (Vtx‘(5 gPetersenGr 2)) ∈ Fin) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
3530, 33, 34syl2an 596 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
3626, 35mpbid 232 . . . 4 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
3721, 25, 36mp2an 692 . . 3 (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))
3813, 16, 373pm3.2i 1340 . 2 ((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
39 eqid 2729 . . . . 5 (5 gPetersenGr 1) = (5 gPetersenGr 1)
4039gpg5gricstgr3 48075 . . . 4 ((1 ∈ (1...2) ∧ 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4119, 40mpan 690 . . 3 (𝑣 ∈ (Vtx‘(5 gPetersenGr 1)) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4241rgen 3046 . 2 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3)
43 eqid 2729 . . . . 5 (5 gPetersenGr 2) = (5 gPetersenGr 2)
4443gpg5gricstgr3 48075 . . . 4 ((2 ∈ (1...2) ∧ 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
4523, 44mpan 690 . . 3 (𝑤 ∈ (Vtx‘(5 gPetersenGr 2)) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
4645rgen 3046 . 2 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)
47 3nn0 12438 . . 3 3 ∈ ℕ0
48 eqid 2729 . . 3 (Vtx‘(5 gPetersenGr 1)) = (Vtx‘(5 gPetersenGr 1))
49 eqid 2729 . . 3 (Vtx‘(5 gPetersenGr 2)) = (Vtx‘(5 gPetersenGr 2))
5047, 48, 49clnbgr3stgrgrlic 48005 . 2 ((((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))) ∧ ∀𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3) ∧ ∀𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)) → (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2))
5138, 42, 46, 50mp3an 1463 1 (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444   class class class wbr 5102  cfv 6499  (class class class)co 7369  cen 8892  Fincfn 8895  0cc0 11046  1c1 11047   < clt 11186   / cdiv 11813  2c2 12219  3c3 12220  5c5 12222  0cn0 12420  cz 12507  cdc 12627  cuz 12771  ...cfz 13446  ..^cfzo 13593  cceil 13731  chash 14273  Vtxcvtx 28977  USGraphcusgr 29130   ClNeighbVtx cclnbgr 47813   ISubGr cisubgr 47854  𝑔𝑟 cgric 47870  StarGrcstgr 47944  𝑙𝑔𝑟 cgrlic 47970   gPetersenGr cgpg 48025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-xnn0 12494  df-z 12508  df-dec 12628  df-uz 12772  df-rp 12930  df-ico 13290  df-fz 13447  df-fzo 13594  df-fl 13732  df-ceil 13733  df-mod 13810  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16200  df-struct 17094  df-slot 17129  df-ndx 17141  df-base 17157  df-edgf 28970  df-vtx 28979  df-iedg 28980  df-edg 29029  df-uhgr 29039  df-ushgr 29040  df-upgr 29063  df-umgr 29064  df-uspgr 29131  df-usgr 29132  df-subgr 29249  df-nbgr 29314  df-clnbgr 47814  df-isubgr 47855  df-grim 47872  df-gric 47875  df-stgr 47945  df-grlim 47971  df-grlic 47974  df-gpg 48026
This theorem is referenced by:  lgricngricex  48113
  Copyright terms: Public domain W3C validator