Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5grlic Structured version   Visualization version   GIF version

Theorem gpg5grlic 48041
Description: The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.)
Assertion
Ref Expression
gpg5grlic (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)

Proof of Theorem gpg5grlic
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 5eluz3 12899 . . . 4 5 ∈ (ℤ‘3)
2 3z 12623 . . . . . . 7 3 ∈ ℤ
3 1lt3 12411 . . . . . . 7 1 < 3
4 eluz2b1 12933 . . . . . . 7 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 1 < 3))
52, 3, 4mpbir2an 711 . . . . . 6 3 ∈ (ℤ‘2)
6 fzo1lb 13728 . . . . . 6 (1 ∈ (1..^3) ↔ 3 ∈ (ℤ‘2))
75, 6mpbir 231 . . . . 5 1 ∈ (1..^3)
8 ceil5half3 47317 . . . . . . 7 (⌈‘(5 / 2)) = 3
98eqcomi 2744 . . . . . 6 3 = (⌈‘(5 / 2))
109oveq2i 7414 . . . . 5 (1..^3) = (1..^(⌈‘(5 / 2)))
117, 10eleqtri 2832 . . . 4 1 ∈ (1..^(⌈‘(5 / 2)))
12 gpgusgra 48009 . . . 4 ((5 ∈ (ℤ‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph)
131, 11, 12mp2an 692 . . 3 (5 gPetersenGr 1) ∈ USGraph
14 2nn 12311 . . . . . 6 2 ∈ ℕ
15 3nn 12317 . . . . . 6 3 ∈ ℕ
16 2lt3 12410 . . . . . 6 2 < 3
17 elfzo1 13727 . . . . . 6 (2 ∈ (1..^3) ↔ (2 ∈ ℕ ∧ 3 ∈ ℕ ∧ 2 < 3))
1814, 15, 16, 17mpbir3an 1342 . . . . 5 2 ∈ (1..^3)
1918, 10eleqtri 2832 . . . 4 2 ∈ (1..^(⌈‘(5 / 2)))
20 gpgusgra 48009 . . . 4 ((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph)
211, 19, 20mp2an 692 . . 3 (5 gPetersenGr 2) ∈ USGraph
22 2eluzge1 12908 . . . . . 6 2 ∈ (ℤ‘1)
23 eluzfz1 13546 . . . . . 6 (2 ∈ (ℤ‘1) → 1 ∈ (1...2))
2422, 23ax-mp 5 . . . . 5 1 ∈ (1...2)
25 gpg5order 48012 . . . . 5 (1 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 1))) = 10)
2624, 25ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 1))) = 10
27 eluzfz2 13547 . . . . . 6 (2 ∈ (ℤ‘1) → 2 ∈ (1...2))
2822, 27ax-mp 5 . . . . 5 2 ∈ (1...2)
29 gpg5order 48012 . . . . 5 (2 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 2))) = 10)
3028, 29ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 2))) = 10
31 eqtr3 2757 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))))
32 fvex 6888 . . . . . . 7 (Vtx‘(5 gPetersenGr 1)) ∈ V
33 10nn0 12724 . . . . . . 7 10 ∈ ℕ0
34 hashvnfin 14376 . . . . . . 7 (((Vtx‘(5 gPetersenGr 1)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin))
3532, 33, 34mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin)
36 fvex 6888 . . . . . . 7 (Vtx‘(5 gPetersenGr 2)) ∈ V
37 hashvnfin 14376 . . . . . . 7 (((Vtx‘(5 gPetersenGr 2)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin))
3836, 33, 37mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin)
39 hashen 14363 . . . . . 6 (((Vtx‘(5 gPetersenGr 1)) ∈ Fin ∧ (Vtx‘(5 gPetersenGr 2)) ∈ Fin) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
4035, 38, 39syl2an 596 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
4131, 40mpbid 232 . . . 4 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
4226, 30, 41mp2an 692 . . 3 (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))
4313, 21, 423pm3.2i 1340 . 2 ((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
44 eqid 2735 . . . . 5 (5 gPetersenGr 1) = (5 gPetersenGr 1)
4544gpg5gricstgr3 48040 . . . 4 ((1 ∈ (1...2) ∧ 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4624, 45mpan 690 . . 3 (𝑣 ∈ (Vtx‘(5 gPetersenGr 1)) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4746rgen 3053 . 2 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3)
48 eqid 2735 . . . . 5 (5 gPetersenGr 2) = (5 gPetersenGr 2)
4948gpg5gricstgr3 48040 . . . 4 ((2 ∈ (1...2) ∧ 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
5028, 49mpan 690 . . 3 (𝑤 ∈ (Vtx‘(5 gPetersenGr 2)) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
5150rgen 3053 . 2 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)
52 3nn0 12517 . . 3 3 ∈ ℕ0
53 eqid 2735 . . 3 (Vtx‘(5 gPetersenGr 1)) = (Vtx‘(5 gPetersenGr 1))
54 eqid 2735 . . 3 (Vtx‘(5 gPetersenGr 2)) = (Vtx‘(5 gPetersenGr 2))
5552, 53, 54clnbgr3stgrgrlic 47972 . 2 ((((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))) ∧ ∀𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3) ∧ ∀𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)) → (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2))
5643, 47, 51, 55mp3an 1463 1 (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459   class class class wbr 5119  cfv 6530  (class class class)co 7403  cen 8954  Fincfn 8957  0cc0 11127  1c1 11128   < clt 11267   / cdiv 11892  cn 12238  2c2 12293  3c3 12294  5c5 12296  0cn0 12499  cz 12586  cdc 12706  cuz 12850  ...cfz 13522  ..^cfzo 13669  cceil 13806  chash 14346  Vtxcvtx 28921  USGraphcusgr 29074   ClNeighbVtx cclnbgr 47780   ISubGr cisubgr 47821  𝑔𝑟 cgric 47837  StarGrcstgr 47911  𝑙𝑔𝑟 cgrlic 47937   gPetersenGr cgpg 47992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-ico 13366  df-fz 13523  df-fzo 13670  df-fl 13807  df-ceil 13808  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-struct 17164  df-slot 17199  df-ndx 17211  df-base 17227  df-edgf 28914  df-vtx 28923  df-iedg 28924  df-edg 28973  df-uhgr 28983  df-ushgr 28984  df-upgr 29007  df-umgr 29008  df-uspgr 29075  df-usgr 29076  df-subgr 29193  df-nbgr 29258  df-clnbgr 47781  df-isubgr 47822  df-grim 47839  df-gric 47842  df-stgr 47912  df-grlim 47938  df-grlic 47941  df-gpg 47993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator