Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5grlic Structured version   Visualization version   GIF version

Theorem gpg5grlic 48098
Description: The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.) (Proof shortened by AV, 22-Nov-2025.)
Assertion
Ref Expression
gpg5grlic (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)

Proof of Theorem gpg5grlic
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 5eluz3 12784 . . . 4 5 ∈ (ℤ‘3)
2 3z 12508 . . . . . . 7 3 ∈ ℤ
3 1lt3 12296 . . . . . . 7 1 < 3
4 eluz2b1 12820 . . . . . . 7 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 1 < 3))
52, 3, 4mpbir2an 711 . . . . . 6 3 ∈ (ℤ‘2)
6 fzo1lb 13616 . . . . . 6 (1 ∈ (1..^3) ↔ 3 ∈ (ℤ‘2))
75, 6mpbir 231 . . . . 5 1 ∈ (1..^3)
8 ceil5half3 47344 . . . . . . 7 (⌈‘(5 / 2)) = 3
98eqcomi 2738 . . . . . 6 3 = (⌈‘(5 / 2))
109oveq2i 7360 . . . . 5 (1..^3) = (1..^(⌈‘(5 / 2)))
117, 10eleqtri 2826 . . . 4 1 ∈ (1..^(⌈‘(5 / 2)))
12 gpgusgra 48061 . . . 4 ((5 ∈ (ℤ‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph)
131, 11, 12mp2an 692 . . 3 (5 gPetersenGr 1) ∈ USGraph
14 pglem 48095 . . . 4 2 ∈ (1..^(⌈‘(5 / 2)))
15 gpgusgra 48061 . . . 4 ((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph)
161, 14, 15mp2an 692 . . 3 (5 gPetersenGr 2) ∈ USGraph
17 2eluzge1 12783 . . . . . 6 2 ∈ (ℤ‘1)
18 eluzfz1 13434 . . . . . 6 (2 ∈ (ℤ‘1) → 1 ∈ (1...2))
1917, 18ax-mp 5 . . . . 5 1 ∈ (1...2)
20 gpg5order 48064 . . . . 5 (1 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 1))) = 10)
2119, 20ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 1))) = 10
22 eluzfz2 13435 . . . . . 6 (2 ∈ (ℤ‘1) → 2 ∈ (1...2))
2317, 22ax-mp 5 . . . . 5 2 ∈ (1...2)
24 gpg5order 48064 . . . . 5 (2 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 2))) = 10)
2523, 24ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 2))) = 10
26 eqtr3 2751 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))))
27 fvex 6835 . . . . . . 7 (Vtx‘(5 gPetersenGr 1)) ∈ V
28 10nn0 12609 . . . . . . 7 10 ∈ ℕ0
29 hashvnfin 14267 . . . . . . 7 (((Vtx‘(5 gPetersenGr 1)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin))
3027, 28, 29mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin)
31 fvex 6835 . . . . . . 7 (Vtx‘(5 gPetersenGr 2)) ∈ V
32 hashvnfin 14267 . . . . . . 7 (((Vtx‘(5 gPetersenGr 2)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin))
3331, 28, 32mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin)
34 hashen 14254 . . . . . 6 (((Vtx‘(5 gPetersenGr 1)) ∈ Fin ∧ (Vtx‘(5 gPetersenGr 2)) ∈ Fin) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
3530, 33, 34syl2an 596 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
3626, 35mpbid 232 . . . 4 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
3721, 25, 36mp2an 692 . . 3 (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))
3813, 16, 373pm3.2i 1340 . 2 ((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
39 eqid 2729 . . . . 5 (5 gPetersenGr 1) = (5 gPetersenGr 1)
4039gpg5gricstgr3 48094 . . . 4 ((1 ∈ (1...2) ∧ 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4119, 40mpan 690 . . 3 (𝑣 ∈ (Vtx‘(5 gPetersenGr 1)) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4241rgen 3046 . 2 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3)
43 eqid 2729 . . . . 5 (5 gPetersenGr 2) = (5 gPetersenGr 2)
4443gpg5gricstgr3 48094 . . . 4 ((2 ∈ (1...2) ∧ 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
4523, 44mpan 690 . . 3 (𝑤 ∈ (Vtx‘(5 gPetersenGr 2)) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
4645rgen 3046 . 2 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)
47 3nn0 12402 . . 3 3 ∈ ℕ0
48 eqid 2729 . . 3 (Vtx‘(5 gPetersenGr 1)) = (Vtx‘(5 gPetersenGr 1))
49 eqid 2729 . . 3 (Vtx‘(5 gPetersenGr 2)) = (Vtx‘(5 gPetersenGr 2))
5047, 48, 49clnbgr3stgrgrlic 48024 . 2 ((((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))) ∧ ∀𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3) ∧ ∀𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)) → (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2))
5138, 42, 46, 50mp3an 1463 1 (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436   class class class wbr 5092  cfv 6482  (class class class)co 7349  cen 8869  Fincfn 8872  0cc0 11009  1c1 11010   < clt 11149   / cdiv 11777  2c2 12183  3c3 12184  5c5 12186  0cn0 12384  cz 12471  cdc 12591  cuz 12735  ...cfz 13410  ..^cfzo 13557  cceil 13695  chash 14237  Vtxcvtx 28945  USGraphcusgr 29098   ClNeighbVtx cclnbgr 47822   ISubGr cisubgr 47864  𝑔𝑟 cgric 47880  StarGrcstgr 47955  𝑙𝑔𝑟 cgrlic 47981   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-fl 13696  df-ceil 13697  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28938  df-vtx 28947  df-iedg 28948  df-edg 28997  df-uhgr 29007  df-ushgr 29008  df-upgr 29031  df-umgr 29032  df-uspgr 29099  df-usgr 29100  df-subgr 29217  df-nbgr 29282  df-clnbgr 47823  df-isubgr 47865  df-grim 47882  df-gric 47885  df-stgr 47956  df-grlim 47982  df-grlic 47985  df-gpg 48045
This theorem is referenced by:  lgricngricex  48133
  Copyright terms: Public domain W3C validator