Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5grlic Structured version   Visualization version   GIF version

Theorem gpg5grlic 48005
Description: The two generalized Petersen graphs G(N,K) of order 10 (𝑁 = 5), which are the Petersen graph G(5,2) and the 5-prism G(5,1), are locally isomorphic. (Contributed by AV, 29-Sep-2025.)
Assertion
Ref Expression
gpg5grlic (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)

Proof of Theorem gpg5grlic
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 5eluz3 12909 . . . 4 5 ∈ (ℤ‘3)
2 3z 12633 . . . . . . 7 3 ∈ ℤ
3 1lt3 12421 . . . . . . 7 1 < 3
4 eluz2b1 12943 . . . . . . 7 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 1 < 3))
52, 3, 4mpbir2an 711 . . . . . 6 3 ∈ (ℤ‘2)
6 fzo1lb 13735 . . . . . 6 (1 ∈ (1..^3) ↔ 3 ∈ (ℤ‘2))
75, 6mpbir 231 . . . . 5 1 ∈ (1..^3)
8 ceil5half3 47300 . . . . . . 7 (⌈‘(5 / 2)) = 3
98eqcomi 2743 . . . . . 6 3 = (⌈‘(5 / 2))
109oveq2i 7424 . . . . 5 (1..^3) = (1..^(⌈‘(5 / 2)))
117, 10eleqtri 2831 . . . 4 1 ∈ (1..^(⌈‘(5 / 2)))
12 gpgusgra 47970 . . . 4 ((5 ∈ (ℤ‘3) ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 1) ∈ USGraph)
131, 11, 12mp2an 692 . . 3 (5 gPetersenGr 1) ∈ USGraph
14 2nn 12321 . . . . . 6 2 ∈ ℕ
15 3nn 12327 . . . . . 6 3 ∈ ℕ
16 2lt3 12420 . . . . . 6 2 < 3
17 elfzo1 13734 . . . . . 6 (2 ∈ (1..^3) ↔ (2 ∈ ℕ ∧ 3 ∈ ℕ ∧ 2 < 3))
1814, 15, 16, 17mpbir3an 1341 . . . . 5 2 ∈ (1..^3)
1918, 10eleqtri 2831 . . . 4 2 ∈ (1..^(⌈‘(5 / 2)))
20 gpgusgra 47970 . . . 4 ((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 2) ∈ USGraph)
211, 19, 20mp2an 692 . . 3 (5 gPetersenGr 2) ∈ USGraph
22 2eluzge1 12918 . . . . . 6 2 ∈ (ℤ‘1)
23 eluzfz1 13553 . . . . . 6 (2 ∈ (ℤ‘1) → 1 ∈ (1...2))
2422, 23ax-mp 5 . . . . 5 1 ∈ (1...2)
25 gpg5order 47972 . . . . 5 (1 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 1))) = 10)
2624, 25ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 1))) = 10
27 eluzfz2 13554 . . . . . 6 (2 ∈ (ℤ‘1) → 2 ∈ (1...2))
2822, 27ax-mp 5 . . . . 5 2 ∈ (1...2)
29 gpg5order 47972 . . . . 5 (2 ∈ (1...2) → (♯‘(Vtx‘(5 gPetersenGr 2))) = 10)
3028, 29ax-mp 5 . . . 4 (♯‘(Vtx‘(5 gPetersenGr 2))) = 10
31 eqtr3 2756 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))))
32 fvex 6899 . . . . . . 7 (Vtx‘(5 gPetersenGr 1)) ∈ V
33 10nn0 12734 . . . . . . 7 10 ∈ ℕ0
34 hashvnfin 14381 . . . . . . 7 (((Vtx‘(5 gPetersenGr 1)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin))
3532, 33, 34mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 → (Vtx‘(5 gPetersenGr 1)) ∈ Fin)
36 fvex 6899 . . . . . . 7 (Vtx‘(5 gPetersenGr 2)) ∈ V
37 hashvnfin 14381 . . . . . . 7 (((Vtx‘(5 gPetersenGr 2)) ∈ V ∧ 10 ∈ ℕ0) → ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin))
3836, 33, 37mp2an 692 . . . . . 6 ((♯‘(Vtx‘(5 gPetersenGr 2))) = 10 → (Vtx‘(5 gPetersenGr 2)) ∈ Fin)
39 hashen 14368 . . . . . 6 (((Vtx‘(5 gPetersenGr 1)) ∈ Fin ∧ (Vtx‘(5 gPetersenGr 2)) ∈ Fin) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
4035, 38, 39syl2an 596 . . . . 5 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → ((♯‘(Vtx‘(5 gPetersenGr 1))) = (♯‘(Vtx‘(5 gPetersenGr 2))) ↔ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))))
4131, 40mpbid 232 . . . 4 (((♯‘(Vtx‘(5 gPetersenGr 1))) = 10 ∧ (♯‘(Vtx‘(5 gPetersenGr 2))) = 10) → (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
4226, 30, 41mp2an 692 . . 3 (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))
4313, 21, 423pm3.2i 1339 . 2 ((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2)))
44 eqid 2734 . . . . 5 (5 gPetersenGr 1) = (5 gPetersenGr 1)
4544gpg5gricstgr3 48004 . . . 4 ((1 ∈ (1...2) ∧ 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4624, 45mpan 690 . . 3 (𝑣 ∈ (Vtx‘(5 gPetersenGr 1)) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3))
4746rgen 3052 . 2 𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3)
48 eqid 2734 . . . . 5 (5 gPetersenGr 2) = (5 gPetersenGr 2)
4948gpg5gricstgr3 48004 . . . 4 ((2 ∈ (1...2) ∧ 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
5028, 49mpan 690 . . 3 (𝑤 ∈ (Vtx‘(5 gPetersenGr 2)) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3))
5150rgen 3052 . 2 𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)
52 3nn0 12527 . . 3 3 ∈ ℕ0
53 eqid 2734 . . 3 (Vtx‘(5 gPetersenGr 1)) = (Vtx‘(5 gPetersenGr 1))
54 eqid 2734 . . 3 (Vtx‘(5 gPetersenGr 2)) = (Vtx‘(5 gPetersenGr 2))
5552, 53, 54clnbgr3stgrgrlic 47937 . 2 ((((5 gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ (Vtx‘(5 gPetersenGr 1)) ≈ (Vtx‘(5 gPetersenGr 2))) ∧ ∀𝑣 ∈ (Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟 (StarGr‘3) ∧ ∀𝑤 ∈ (Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟 (StarGr‘3)) → (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2))
5643, 47, 51, 55mp3an 1462 1 (5 gPetersenGr 1) ≃𝑙𝑔𝑟 (5 gPetersenGr 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463   class class class wbr 5123  cfv 6541  (class class class)co 7413  cen 8964  Fincfn 8967  0cc0 11137  1c1 11138   < clt 11277   / cdiv 11902  cn 12248  2c2 12303  3c3 12304  5c5 12306  0cn0 12509  cz 12596  cdc 12716  cuz 12860  ...cfz 13529  ..^cfzo 13676  cceil 13813  chash 14351  Vtxcvtx 28941  USGraphcusgr 29094   ClNeighbVtx cclnbgr 47763   ISubGr cisubgr 47804  𝑔𝑟 cgric 47820  StarGrcstgr 47876  𝑙𝑔𝑟 cgrlic 47902   gPetersenGr cgpg 47957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-ico 13375  df-fz 13530  df-fzo 13677  df-fl 13814  df-ceil 13815  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-dvds 16273  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17230  df-edgf 28934  df-vtx 28943  df-iedg 28944  df-edg 28993  df-uhgr 29003  df-ushgr 29004  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-subgr 29213  df-nbgr 29278  df-clnbgr 47764  df-isubgr 47805  df-grim 47822  df-gric 47825  df-stgr 47877  df-grlim 47903  df-grlic 47906  df-gpg 47958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator