Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrexmpl1lem Structured version   Visualization version   GIF version

Theorem usgrexmpl1lem 48145
Description: Lemma for usgrexmpl1 48146. (Contributed by AV, 2-Aug-2025.)
Hypotheses
Ref Expression
usgrexmpl1.v 𝑉 = (0...5)
usgrexmpl1.e 𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩
Assertion
Ref Expression
usgrexmpl1lem 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Distinct variable group:   𝑒,𝑉
Allowed substitution hint:   𝐸(𝑒)

Proof of Theorem usgrexmpl1lem
StepHypRef Expression
1 prex 5377 . . . . 5 {0, 1} ∈ V
2 prex 5377 . . . . 5 {0, 2} ∈ V
3 prex 5377 . . . . 5 {1, 2} ∈ V
41, 2, 33pm3.2i 1340 . . . 4 ({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V)
5 prex 5377 . . . 4 {0, 3} ∈ V
6 prex 5377 . . . . 5 {3, 4} ∈ V
7 prex 5377 . . . . 5 {3, 5} ∈ V
8 prex 5377 . . . . 5 {4, 5} ∈ V
96, 7, 83pm3.2i 1340 . . . 4 ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)
104, 5, 93pm3.2i 1340 . . 3 (({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V))
11 0nn0 12403 . . . . . . . . . 10 0 ∈ ℕ0
12 1nn0 12404 . . . . . . . . . 10 1 ∈ ℕ0
1311, 12pm3.2i 470 . . . . . . . . 9 (0 ∈ ℕ0 ∧ 1 ∈ ℕ0)
14 2nn0 12405 . . . . . . . . . 10 2 ∈ ℕ0
1511, 14pm3.2i 470 . . . . . . . . 9 (0 ∈ ℕ0 ∧ 2 ∈ ℕ0)
1613, 15pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 2 ∈ ℕ0))
17 ax-1ne0 11082 . . . . . . . . . 10 1 ≠ 0
18 1ne2 12335 . . . . . . . . . 10 1 ≠ 2
1917, 18pm3.2i 470 . . . . . . . . 9 (1 ≠ 0 ∧ 1 ≠ 2)
2019olci 866 . . . . . . . 8 ((0 ≠ 0 ∧ 0 ≠ 2) ∨ (1 ≠ 0 ∧ 1 ≠ 2))
21 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 2 ∈ ℕ0)) → (((0 ≠ 0 ∧ 0 ≠ 2) ∨ (1 ≠ 0 ∧ 1 ≠ 2)) → {0, 1} ≠ {0, 2}))
2216, 20, 21mp2 9 . . . . . . 7 {0, 1} ≠ {0, 2}
2312, 14pm3.2i 470 . . . . . . . . 9 (1 ∈ ℕ0 ∧ 2 ∈ ℕ0)
2413, 23pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (1 ∈ ℕ0 ∧ 2 ∈ ℕ0))
25 0ne1 12203 . . . . . . . . . 10 0 ≠ 1
26 0ne2 12334 . . . . . . . . . 10 0 ≠ 2
2725, 26pm3.2i 470 . . . . . . . . 9 (0 ≠ 1 ∧ 0 ≠ 2)
2827orci 865 . . . . . . . 8 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2))
29 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (1 ∈ ℕ0 ∧ 2 ∈ ℕ0)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (1 ≠ 1 ∧ 1 ≠ 2)) → {0, 1} ≠ {1, 2}))
3024, 28, 29mp2 9 . . . . . . 7 {0, 1} ≠ {1, 2}
31 3nn0 12406 . . . . . . . . . 10 3 ∈ ℕ0
3211, 31pm3.2i 470 . . . . . . . . 9 (0 ∈ ℕ0 ∧ 3 ∈ ℕ0)
3313, 32pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 3 ∈ ℕ0))
34 1re 11119 . . . . . . . . . . 11 1 ∈ ℝ
35 1lt3 12300 . . . . . . . . . . 11 1 < 3
3634, 35ltneii 11233 . . . . . . . . . 10 1 ≠ 3
3717, 36pm3.2i 470 . . . . . . . . 9 (1 ≠ 0 ∧ 1 ≠ 3)
3837olci 866 . . . . . . . 8 ((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3))
39 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 3 ∈ ℕ0)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (1 ≠ 0 ∧ 1 ≠ 3)) → {0, 1} ≠ {0, 3}))
4033, 38, 39mp2 9 . . . . . . 7 {0, 1} ≠ {0, 3}
4122, 30, 403pm3.2i 1340 . . . . . 6 ({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3})
42 4nn0 12407 . . . . . . . . . 10 4 ∈ ℕ0
4331, 42pm3.2i 470 . . . . . . . . 9 (3 ∈ ℕ0 ∧ 4 ∈ ℕ0)
4413, 43pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0))
45 0re 11121 . . . . . . . . . . 11 0 ∈ ℝ
46 3pos 12237 . . . . . . . . . . 11 0 < 3
4745, 46ltneii 11233 . . . . . . . . . 10 0 ≠ 3
48 4pos 12239 . . . . . . . . . . 11 0 < 4
4945, 48ltneii 11233 . . . . . . . . . 10 0 ≠ 4
5047, 49pm3.2i 470 . . . . . . . . 9 (0 ≠ 3 ∧ 0 ≠ 4)
5150orci 865 . . . . . . . 8 ((0 ≠ 3 ∧ 0 ≠ 4) ∨ (1 ≠ 3 ∧ 1 ≠ 4))
52 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0)) → (((0 ≠ 3 ∧ 0 ≠ 4) ∨ (1 ≠ 3 ∧ 1 ≠ 4)) → {0, 1} ≠ {3, 4}))
5344, 51, 52mp2 9 . . . . . . 7 {0, 1} ≠ {3, 4}
54 5nn0 12408 . . . . . . . . . 10 5 ∈ ℕ0
5531, 54pm3.2i 470 . . . . . . . . 9 (3 ∈ ℕ0 ∧ 5 ∈ ℕ0)
5613, 55pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0))
57 5pos 12241 . . . . . . . . . . 11 0 < 5
5845, 57ltneii 11233 . . . . . . . . . 10 0 ≠ 5
5947, 58pm3.2i 470 . . . . . . . . 9 (0 ≠ 3 ∧ 0 ≠ 5)
6059orci 865 . . . . . . . 8 ((0 ≠ 3 ∧ 0 ≠ 5) ∨ (1 ≠ 3 ∧ 1 ≠ 5))
61 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 3 ∧ 0 ≠ 5) ∨ (1 ≠ 3 ∧ 1 ≠ 5)) → {0, 1} ≠ {3, 5}))
6256, 60, 61mp2 9 . . . . . . 7 {0, 1} ≠ {3, 5}
6342, 54pm3.2i 470 . . . . . . . . 9 (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)
6413, 63pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
6549, 58pm3.2i 470 . . . . . . . . 9 (0 ≠ 4 ∧ 0 ≠ 5)
6665orci 865 . . . . . . . 8 ((0 ≠ 4 ∧ 0 ≠ 5) ∨ (1 ≠ 4 ∧ 1 ≠ 5))
67 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 4 ∧ 0 ≠ 5) ∨ (1 ≠ 4 ∧ 1 ≠ 5)) → {0, 1} ≠ {4, 5}))
6864, 66, 67mp2 9 . . . . . . 7 {0, 1} ≠ {4, 5}
6953, 62, 683pm3.2i 1340 . . . . . 6 ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})
7041, 69pm3.2i 470 . . . . 5 (({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5}))
7115, 23pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (1 ∈ ℕ0 ∧ 2 ∈ ℕ0))
7227orci 865 . . . . . . . 8 ((0 ≠ 1 ∧ 0 ≠ 2) ∨ (2 ≠ 1 ∧ 2 ≠ 2))
73 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (1 ∈ ℕ0 ∧ 2 ∈ ℕ0)) → (((0 ≠ 1 ∧ 0 ≠ 2) ∨ (2 ≠ 1 ∧ 2 ≠ 2)) → {0, 2} ≠ {1, 2}))
7471, 72, 73mp2 9 . . . . . . 7 {0, 2} ≠ {1, 2}
7515, 32pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 3 ∈ ℕ0))
76 2ne0 12236 . . . . . . . . . 10 2 ≠ 0
77 2re 12206 . . . . . . . . . . 11 2 ∈ ℝ
78 2lt3 12299 . . . . . . . . . . 11 2 < 3
7977, 78ltneii 11233 . . . . . . . . . 10 2 ≠ 3
8076, 79pm3.2i 470 . . . . . . . . 9 (2 ≠ 0 ∧ 2 ≠ 3)
8180olci 866 . . . . . . . 8 ((0 ≠ 0 ∧ 0 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
82 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 3 ∈ ℕ0)) → (((0 ≠ 0 ∧ 0 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {0, 2} ≠ {0, 3}))
8375, 81, 82mp2 9 . . . . . . 7 {0, 2} ≠ {0, 3}
8474, 83pm3.2i 470 . . . . . 6 ({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3})
8515, 43pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0))
8650orci 865 . . . . . . . 8 ((0 ≠ 3 ∧ 0 ≠ 4) ∨ (2 ≠ 3 ∧ 2 ≠ 4))
87 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0)) → (((0 ≠ 3 ∧ 0 ≠ 4) ∨ (2 ≠ 3 ∧ 2 ≠ 4)) → {0, 2} ≠ {3, 4}))
8885, 86, 87mp2 9 . . . . . . 7 {0, 2} ≠ {3, 4}
8915, 55pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0))
9059orci 865 . . . . . . . 8 ((0 ≠ 3 ∧ 0 ≠ 5) ∨ (2 ≠ 3 ∧ 2 ≠ 5))
91 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 3 ∧ 0 ≠ 5) ∨ (2 ≠ 3 ∧ 2 ≠ 5)) → {0, 2} ≠ {3, 5}))
9289, 90, 91mp2 9 . . . . . . 7 {0, 2} ≠ {3, 5}
9315, 63pm3.2i 470 . . . . . . . 8 ((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
9465orci 865 . . . . . . . 8 ((0 ≠ 4 ∧ 0 ≠ 5) ∨ (2 ≠ 4 ∧ 2 ≠ 5))
95 prneimg 4805 . . . . . . . 8 (((0 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 4 ∧ 0 ≠ 5) ∨ (2 ≠ 4 ∧ 2 ≠ 5)) → {0, 2} ≠ {4, 5}))
9693, 94, 95mp2 9 . . . . . . 7 {0, 2} ≠ {4, 5}
9788, 92, 963pm3.2i 1340 . . . . . 6 ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})
9884, 97pm3.2i 470 . . . . 5 (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5}))
9923, 32pm3.2i 470 . . . . . . 7 ((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 3 ∈ ℕ0))
10037orci 865 . . . . . . 7 ((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3))
101 prneimg 4805 . . . . . . 7 (((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (0 ∈ ℕ0 ∧ 3 ∈ ℕ0)) → (((1 ≠ 0 ∧ 1 ≠ 3) ∨ (2 ≠ 0 ∧ 2 ≠ 3)) → {1, 2} ≠ {0, 3}))
10299, 100, 101mp2 9 . . . . . 6 {1, 2} ≠ {0, 3}
10323, 43pm3.2i 470 . . . . . . . 8 ((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0))
104 1lt4 12303 . . . . . . . . . . 11 1 < 4
10534, 104ltneii 11233 . . . . . . . . . 10 1 ≠ 4
10636, 105pm3.2i 470 . . . . . . . . 9 (1 ≠ 3 ∧ 1 ≠ 4)
107106orci 865 . . . . . . . 8 ((1 ≠ 3 ∧ 1 ≠ 4) ∨ (2 ≠ 3 ∧ 2 ≠ 4))
108 prneimg 4805 . . . . . . . 8 (((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0)) → (((1 ≠ 3 ∧ 1 ≠ 4) ∨ (2 ≠ 3 ∧ 2 ≠ 4)) → {1, 2} ≠ {3, 4}))
109103, 107, 108mp2 9 . . . . . . 7 {1, 2} ≠ {3, 4}
11023, 55pm3.2i 470 . . . . . . . 8 ((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0))
111 1lt5 12307 . . . . . . . . . . 11 1 < 5
11234, 111ltneii 11233 . . . . . . . . . 10 1 ≠ 5
11336, 112pm3.2i 470 . . . . . . . . 9 (1 ≠ 3 ∧ 1 ≠ 5)
114113orci 865 . . . . . . . 8 ((1 ≠ 3 ∧ 1 ≠ 5) ∨ (2 ≠ 3 ∧ 2 ≠ 5))
115 prneimg 4805 . . . . . . . 8 (((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((1 ≠ 3 ∧ 1 ≠ 5) ∨ (2 ≠ 3 ∧ 2 ≠ 5)) → {1, 2} ≠ {3, 5}))
116110, 114, 115mp2 9 . . . . . . 7 {1, 2} ≠ {3, 5}
11723, 63pm3.2i 470 . . . . . . . 8 ((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
118105, 112pm3.2i 470 . . . . . . . . 9 (1 ≠ 4 ∧ 1 ≠ 5)
119118orci 865 . . . . . . . 8 ((1 ≠ 4 ∧ 1 ≠ 5) ∨ (2 ≠ 4 ∧ 2 ≠ 5))
120 prneimg 4805 . . . . . . . 8 (((1 ∈ ℕ0 ∧ 2 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((1 ≠ 4 ∧ 1 ≠ 5) ∨ (2 ≠ 4 ∧ 2 ≠ 5)) → {1, 2} ≠ {4, 5}))
121117, 119, 120mp2 9 . . . . . . 7 {1, 2} ≠ {4, 5}
122109, 116, 1213pm3.2i 1340 . . . . . 6 ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5})
123102, 122pm3.2i 470 . . . . 5 ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))
12470, 98, 1233pm3.2i 1340 . . . 4 ((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5})))
12532, 43pm3.2i 470 . . . . . . 7 ((0 ∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0))
12650orci 865 . . . . . . 7 ((0 ≠ 3 ∧ 0 ≠ 4) ∨ (3 ≠ 3 ∧ 3 ≠ 4))
127 prneimg 4805 . . . . . . 7 (((0 ∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 4 ∈ ℕ0)) → (((0 ≠ 3 ∧ 0 ≠ 4) ∨ (3 ≠ 3 ∧ 3 ≠ 4)) → {0, 3} ≠ {3, 4}))
128125, 126, 127mp2 9 . . . . . 6 {0, 3} ≠ {3, 4}
12932, 55pm3.2i 470 . . . . . . 7 ((0 ∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0))
13059orci 865 . . . . . . 7 ((0 ≠ 3 ∧ 0 ≠ 5) ∨ (3 ≠ 3 ∧ 3 ≠ 5))
131 prneimg 4805 . . . . . . 7 (((0 ∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 3 ∧ 0 ≠ 5) ∨ (3 ≠ 3 ∧ 3 ≠ 5)) → {0, 3} ≠ {3, 5}))
132129, 130, 131mp2 9 . . . . . 6 {0, 3} ≠ {3, 5}
13332, 63pm3.2i 470 . . . . . . 7 ((0 ∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
13465orci 865 . . . . . . 7 ((0 ≠ 4 ∧ 0 ≠ 5) ∨ (3 ≠ 4 ∧ 3 ≠ 5))
135 prneimg 4805 . . . . . . 7 (((0 ∈ ℕ0 ∧ 3 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((0 ≠ 4 ∧ 0 ≠ 5) ∨ (3 ≠ 4 ∧ 3 ≠ 5)) → {0, 3} ≠ {4, 5}))
136133, 134, 135mp2 9 . . . . . 6 {0, 3} ≠ {4, 5}
137128, 132, 1363pm3.2i 1340 . . . . 5 ({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5})
13843, 55pm3.2i 470 . . . . . . 7 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0))
139 3re 12212 . . . . . . . . . . 11 3 ∈ ℝ
140 3lt4 12301 . . . . . . . . . . 11 3 < 4
141139, 140ltneii 11233 . . . . . . . . . 10 3 ≠ 4
142141necomi 2983 . . . . . . . . 9 4 ≠ 3
143 4re 12216 . . . . . . . . . 10 4 ∈ ℝ
144 4lt5 12304 . . . . . . . . . 10 4 < 5
145143, 144ltneii 11233 . . . . . . . . 9 4 ≠ 5
146142, 145pm3.2i 470 . . . . . . . 8 (4 ≠ 3 ∧ 4 ≠ 5)
147146olci 866 . . . . . . 7 ((3 ≠ 3 ∧ 3 ≠ 5) ∨ (4 ≠ 3 ∧ 4 ≠ 5))
148 prneimg 4805 . . . . . . 7 (((3 ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((3 ≠ 3 ∧ 3 ≠ 5) ∨ (4 ≠ 3 ∧ 4 ≠ 5)) → {3, 4} ≠ {3, 5}))
149138, 147, 148mp2 9 . . . . . 6 {3, 4} ≠ {3, 5}
15043, 63pm3.2i 470 . . . . . . 7 ((3 ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
151 3lt5 12305 . . . . . . . . . 10 3 < 5
152139, 151ltneii 11233 . . . . . . . . 9 3 ≠ 5
153141, 152pm3.2i 470 . . . . . . . 8 (3 ≠ 4 ∧ 3 ≠ 5)
154153orci 865 . . . . . . 7 ((3 ≠ 4 ∧ 3 ≠ 5) ∨ (4 ≠ 4 ∧ 4 ≠ 5))
155 prneimg 4805 . . . . . . 7 (((3 ∈ ℕ0 ∧ 4 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((3 ≠ 4 ∧ 3 ≠ 5) ∨ (4 ≠ 4 ∧ 4 ≠ 5)) → {3, 4} ≠ {4, 5}))
156150, 154, 155mp2 9 . . . . . 6 {3, 4} ≠ {4, 5}
15755, 63pm3.2i 470 . . . . . . 7 ((3 ∈ ℕ0 ∧ 5 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0))
158153orci 865 . . . . . . 7 ((3 ≠ 4 ∧ 3 ≠ 5) ∨ (5 ≠ 4 ∧ 5 ≠ 5))
159 prneimg 4805 . . . . . . 7 (((3 ∈ ℕ0 ∧ 5 ∈ ℕ0) ∧ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0)) → (((3 ≠ 4 ∧ 3 ≠ 5) ∨ (5 ≠ 4 ∧ 5 ≠ 5)) → {3, 5} ≠ {4, 5}))
160157, 158, 159mp2 9 . . . . . 6 {3, 5} ≠ {4, 5}
161149, 156, 1603pm3.2i 1340 . . . . 5 ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})
162137, 161pm3.2i 470 . . . 4 (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5}))
163124, 162pm3.2i 470 . . 3 (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})))
16410, 163pm3.2i 470 . 2 ((({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)) ∧ (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5}))))
165 usgrexmpl1.e . 2 𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩
166 s7f1o 14875 . . . . . . 7 (((({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)) ∧ (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})))) → (𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩ → 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})))
167166imp 406 . . . . . 6 ((((({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)) ∧ (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})))) ∧ 𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩) → 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}))
168 s7len 14811 . . . . . . . 8 (♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩) = 7
169168oveq2i 7363 . . . . . . 7 (0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩)) = (0..^7)
170 f1oeq2 6757 . . . . . . 7 ((0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩)) = (0..^7) → (𝐸:(0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩))–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ↔ 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})))
171169, 170ax-mp 5 . . . . . 6 (𝐸:(0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩))–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ↔ 𝐸:(0..^7)–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}))
172167, 171sylibr 234 . . . . 5 ((((({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)) ∧ (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})))) ∧ 𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩) → 𝐸:(0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩))–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}))
173165dmeqi 5848 . . . . . . 7 dom 𝐸 = dom ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩
174 s7cli 14794 . . . . . . . 8 ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩ ∈ Word V
175 wrddm 14430 . . . . . . . 8 (⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩ ∈ Word V → dom ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩ = (0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩)))
176174, 175ax-mp 5 . . . . . . 7 dom ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩ = (0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩))
177173, 176eqtri 2756 . . . . . 6 dom 𝐸 = (0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩))
178 f1oeq2 6757 . . . . . 6 (dom 𝐸 = (0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩)) → (𝐸:dom 𝐸1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ↔ 𝐸:(0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩))–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})))
179177, 178ax-mp 5 . . . . 5 (𝐸:dom 𝐸1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ↔ 𝐸:(0..^(♯‘⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩))–1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}))
180172, 179sylibr 234 . . . 4 ((((({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)) ∧ (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})))) ∧ 𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩) → 𝐸:dom 𝐸1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}))
181 f1of1 6767 . . . 4 (𝐸:dom 𝐸1-1-onto→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) → 𝐸:dom 𝐸1-1→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}))
182180, 181syl 17 . . 3 ((((({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)) ∧ (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})))) ∧ 𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩) → 𝐸:dom 𝐸1-1→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}))
183 0elfz 13526 . . . . . . . . . . 11 (5 ∈ ℕ0 → 0 ∈ (0...5))
18454, 183ax-mp 5 . . . . . . . . . 10 0 ∈ (0...5)
185 5re 12219 . . . . . . . . . . . 12 5 ∈ ℝ
18634, 185, 111ltleii 11243 . . . . . . . . . . 11 1 ≤ 5
187 elfz2nn0 13520 . . . . . . . . . . 11 (1 ∈ (0...5) ↔ (1 ∈ ℕ0 ∧ 5 ∈ ℕ0 ∧ 1 ≤ 5))
18812, 54, 186, 187mpbir3an 1342 . . . . . . . . . 10 1 ∈ (0...5)
189 prssi 4772 . . . . . . . . . 10 ((0 ∈ (0...5) ∧ 1 ∈ (0...5)) → {0, 1} ⊆ (0...5))
190184, 188, 189mp2an 692 . . . . . . . . 9 {0, 1} ⊆ (0...5)
191 2lt5 12306 . . . . . . . . . . . 12 2 < 5
19277, 185, 191ltleii 11243 . . . . . . . . . . 11 2 ≤ 5
193 elfz2nn0 13520 . . . . . . . . . . 11 (2 ∈ (0...5) ↔ (2 ∈ ℕ0 ∧ 5 ∈ ℕ0 ∧ 2 ≤ 5))
19414, 54, 192, 193mpbir3an 1342 . . . . . . . . . 10 2 ∈ (0...5)
195 prssi 4772 . . . . . . . . . 10 ((0 ∈ (0...5) ∧ 2 ∈ (0...5)) → {0, 2} ⊆ (0...5))
196184, 194, 195mp2an 692 . . . . . . . . 9 {0, 2} ⊆ (0...5)
197 prssi 4772 . . . . . . . . . 10 ((1 ∈ (0...5) ∧ 2 ∈ (0...5)) → {1, 2} ⊆ (0...5))
198188, 194, 197mp2an 692 . . . . . . . . 9 {1, 2} ⊆ (0...5)
199 sseq1 3956 . . . . . . . . . . 11 (𝑒 = {0, 1} → (𝑒 ⊆ (0...5) ↔ {0, 1} ⊆ (0...5)))
200 sseq1 3956 . . . . . . . . . . 11 (𝑒 = {0, 2} → (𝑒 ⊆ (0...5) ↔ {0, 2} ⊆ (0...5)))
201 sseq1 3956 . . . . . . . . . . 11 (𝑒 = {1, 2} → (𝑒 ⊆ (0...5) ↔ {1, 2} ⊆ (0...5)))
202199, 200, 201raltpg 4650 . . . . . . . . . 10 (({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) → (∀𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}}𝑒 ⊆ (0...5) ↔ ({0, 1} ⊆ (0...5) ∧ {0, 2} ⊆ (0...5) ∧ {1, 2} ⊆ (0...5))))
2034, 202ax-mp 5 . . . . . . . . 9 (∀𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}}𝑒 ⊆ (0...5) ↔ ({0, 1} ⊆ (0...5) ∧ {0, 2} ⊆ (0...5) ∧ {1, 2} ⊆ (0...5)))
204190, 196, 198, 203mpbir3an 1342 . . . . . . . 8 𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}}𝑒 ⊆ (0...5)
205139, 185, 151ltleii 11243 . . . . . . . . . . 11 3 ≤ 5
206 elfz2nn0 13520 . . . . . . . . . . 11 (3 ∈ (0...5) ↔ (3 ∈ ℕ0 ∧ 5 ∈ ℕ0 ∧ 3 ≤ 5))
20731, 54, 205, 206mpbir3an 1342 . . . . . . . . . 10 3 ∈ (0...5)
208 prssi 4772 . . . . . . . . . 10 ((0 ∈ (0...5) ∧ 3 ∈ (0...5)) → {0, 3} ⊆ (0...5))
209184, 207, 208mp2an 692 . . . . . . . . 9 {0, 3} ⊆ (0...5)
210 sseq1 3956 . . . . . . . . . 10 (𝑒 = {0, 3} → (𝑒 ⊆ (0...5) ↔ {0, 3} ⊆ (0...5)))
2115, 210ralsn 4633 . . . . . . . . 9 (∀𝑒 ∈ {{0, 3}}𝑒 ⊆ (0...5) ↔ {0, 3} ⊆ (0...5))
212209, 211mpbir 231 . . . . . . . 8 𝑒 ∈ {{0, 3}}𝑒 ⊆ (0...5)
213 ralunb 4146 . . . . . . . 8 (∀𝑒 ∈ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}})𝑒 ⊆ (0...5) ↔ (∀𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}}𝑒 ⊆ (0...5) ∧ ∀𝑒 ∈ {{0, 3}}𝑒 ⊆ (0...5)))
214204, 212, 213mpbir2an 711 . . . . . . 7 𝑒 ∈ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}})𝑒 ⊆ (0...5)
215143, 185, 144ltleii 11243 . . . . . . . . . 10 4 ≤ 5
216 elfz2nn0 13520 . . . . . . . . . 10 (4 ∈ (0...5) ↔ (4 ∈ ℕ0 ∧ 5 ∈ ℕ0 ∧ 4 ≤ 5))
21742, 54, 215, 216mpbir3an 1342 . . . . . . . . 9 4 ∈ (0...5)
218 prssi 4772 . . . . . . . . 9 ((3 ∈ (0...5) ∧ 4 ∈ (0...5)) → {3, 4} ⊆ (0...5))
219207, 217, 218mp2an 692 . . . . . . . 8 {3, 4} ⊆ (0...5)
220 nn0fz0 13527 . . . . . . . . . 10 (5 ∈ ℕ0 ↔ 5 ∈ (0...5))
22154, 220mpbi 230 . . . . . . . . 9 5 ∈ (0...5)
222 prssi 4772 . . . . . . . . 9 ((3 ∈ (0...5) ∧ 5 ∈ (0...5)) → {3, 5} ⊆ (0...5))
223207, 221, 222mp2an 692 . . . . . . . 8 {3, 5} ⊆ (0...5)
224 prssi 4772 . . . . . . . . 9 ((4 ∈ (0...5) ∧ 5 ∈ (0...5)) → {4, 5} ⊆ (0...5))
225217, 221, 224mp2an 692 . . . . . . . 8 {4, 5} ⊆ (0...5)
226 sseq1 3956 . . . . . . . . . 10 (𝑒 = {3, 4} → (𝑒 ⊆ (0...5) ↔ {3, 4} ⊆ (0...5)))
227 sseq1 3956 . . . . . . . . . 10 (𝑒 = {3, 5} → (𝑒 ⊆ (0...5) ↔ {3, 5} ⊆ (0...5)))
228 sseq1 3956 . . . . . . . . . 10 (𝑒 = {4, 5} → (𝑒 ⊆ (0...5) ↔ {4, 5} ⊆ (0...5)))
229226, 227, 228raltpg 4650 . . . . . . . . 9 (({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V) → (∀𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}}𝑒 ⊆ (0...5) ↔ ({3, 4} ⊆ (0...5) ∧ {3, 5} ⊆ (0...5) ∧ {4, 5} ⊆ (0...5))))
2309, 229ax-mp 5 . . . . . . . 8 (∀𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}}𝑒 ⊆ (0...5) ↔ ({3, 4} ⊆ (0...5) ∧ {3, 5} ⊆ (0...5) ∧ {4, 5} ⊆ (0...5)))
231219, 223, 225, 230mpbir3an 1342 . . . . . . 7 𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}}𝑒 ⊆ (0...5)
232 ralunb 4146 . . . . . . 7 (∀𝑒 ∈ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})𝑒 ⊆ (0...5) ↔ (∀𝑒 ∈ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}})𝑒 ⊆ (0...5) ∧ ∀𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}}𝑒 ⊆ (0...5)))
233214, 231, 232mpbir2an 711 . . . . . 6 𝑒 ∈ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})𝑒 ⊆ (0...5)
234 pwssb 5051 . . . . . 6 ((({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ⊆ 𝒫 (0...5) ↔ ∀𝑒 ∈ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})𝑒 ⊆ (0...5))
235233, 234mpbir 231 . . . . 5 (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ⊆ 𝒫 (0...5)
236 usgrexmpl1.v . . . . . 6 𝑉 = (0...5)
237236pweqi 4565 . . . . 5 𝒫 𝑉 = 𝒫 (0...5)
238235, 237sseqtrri 3980 . . . 4 (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ⊆ 𝒫 𝑉
239 prhash2ex 14308 . . . . . . 7 (♯‘{0, 1}) = 2
240 c0ex 11113 . . . . . . . . 9 0 ∈ V
241 2ex 12209 . . . . . . . . 9 2 ∈ V
242240, 241, 263pm3.2i 1340 . . . . . . . 8 (0 ∈ V ∧ 2 ∈ V ∧ 0 ≠ 2)
243 hashprb 14306 . . . . . . . 8 ((0 ∈ V ∧ 2 ∈ V ∧ 0 ≠ 2) ↔ (♯‘{0, 2}) = 2)
244242, 243mpbi 230 . . . . . . 7 (♯‘{0, 2}) = 2
245 1ex 11115 . . . . . . . . 9 1 ∈ V
246245, 241, 183pm3.2i 1340 . . . . . . . 8 (1 ∈ V ∧ 2 ∈ V ∧ 1 ≠ 2)
247 hashprb 14306 . . . . . . . 8 ((1 ∈ V ∧ 2 ∈ V ∧ 1 ≠ 2) ↔ (♯‘{1, 2}) = 2)
248246, 247mpbi 230 . . . . . . 7 (♯‘{1, 2}) = 2
249 fveqeq2 6837 . . . . . . . . 9 (𝑒 = {0, 1} → ((♯‘𝑒) = 2 ↔ (♯‘{0, 1}) = 2))
250 fveqeq2 6837 . . . . . . . . 9 (𝑒 = {0, 2} → ((♯‘𝑒) = 2 ↔ (♯‘{0, 2}) = 2))
251 fveqeq2 6837 . . . . . . . . 9 (𝑒 = {1, 2} → ((♯‘𝑒) = 2 ↔ (♯‘{1, 2}) = 2))
252249, 250, 251raltpg 4650 . . . . . . . 8 (({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) → (∀𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}} (♯‘𝑒) = 2 ↔ ((♯‘{0, 1}) = 2 ∧ (♯‘{0, 2}) = 2 ∧ (♯‘{1, 2}) = 2)))
2534, 252ax-mp 5 . . . . . . 7 (∀𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}} (♯‘𝑒) = 2 ↔ ((♯‘{0, 1}) = 2 ∧ (♯‘{0, 2}) = 2 ∧ (♯‘{1, 2}) = 2))
254239, 244, 248, 253mpbir3an 1342 . . . . . 6 𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}} (♯‘𝑒) = 2
255 3ex 12214 . . . . . . . . 9 3 ∈ V
256240, 255, 473pm3.2i 1340 . . . . . . . 8 (0 ∈ V ∧ 3 ∈ V ∧ 0 ≠ 3)
257 hashprb 14306 . . . . . . . 8 ((0 ∈ V ∧ 3 ∈ V ∧ 0 ≠ 3) ↔ (♯‘{0, 3}) = 2)
258256, 257mpbi 230 . . . . . . 7 (♯‘{0, 3}) = 2
259 fveqeq2 6837 . . . . . . . 8 (𝑒 = {0, 3} → ((♯‘𝑒) = 2 ↔ (♯‘{0, 3}) = 2))
2605, 259ralsn 4633 . . . . . . 7 (∀𝑒 ∈ {{0, 3}} (♯‘𝑒) = 2 ↔ (♯‘{0, 3}) = 2)
261258, 260mpbir 231 . . . . . 6 𝑒 ∈ {{0, 3}} (♯‘𝑒) = 2
262 ralunb 4146 . . . . . 6 (∀𝑒 ∈ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}})(♯‘𝑒) = 2 ↔ (∀𝑒 ∈ {{0, 1}, {0, 2}, {1, 2}} (♯‘𝑒) = 2 ∧ ∀𝑒 ∈ {{0, 3}} (♯‘𝑒) = 2))
263254, 261, 262mpbir2an 711 . . . . 5 𝑒 ∈ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}})(♯‘𝑒) = 2
264143elexi 3460 . . . . . . . 8 4 ∈ V
265255, 264, 1413pm3.2i 1340 . . . . . . 7 (3 ∈ V ∧ 4 ∈ V ∧ 3 ≠ 4)
266 hashprb 14306 . . . . . . 7 ((3 ∈ V ∧ 4 ∈ V ∧ 3 ≠ 4) ↔ (♯‘{3, 4}) = 2)
267265, 266mpbi 230 . . . . . 6 (♯‘{3, 4}) = 2
268185elexi 3460 . . . . . . . 8 5 ∈ V
269255, 268, 1523pm3.2i 1340 . . . . . . 7 (3 ∈ V ∧ 5 ∈ V ∧ 3 ≠ 5)
270 hashprb 14306 . . . . . . 7 ((3 ∈ V ∧ 5 ∈ V ∧ 3 ≠ 5) ↔ (♯‘{3, 5}) = 2)
271269, 270mpbi 230 . . . . . 6 (♯‘{3, 5}) = 2
272264, 268, 1453pm3.2i 1340 . . . . . . 7 (4 ∈ V ∧ 5 ∈ V ∧ 4 ≠ 5)
273 hashprb 14306 . . . . . . 7 ((4 ∈ V ∧ 5 ∈ V ∧ 4 ≠ 5) ↔ (♯‘{4, 5}) = 2)
274272, 273mpbi 230 . . . . . 6 (♯‘{4, 5}) = 2
275 fveqeq2 6837 . . . . . . . 8 (𝑒 = {3, 4} → ((♯‘𝑒) = 2 ↔ (♯‘{3, 4}) = 2))
276 fveqeq2 6837 . . . . . . . 8 (𝑒 = {3, 5} → ((♯‘𝑒) = 2 ↔ (♯‘{3, 5}) = 2))
277 fveqeq2 6837 . . . . . . . 8 (𝑒 = {4, 5} → ((♯‘𝑒) = 2 ↔ (♯‘{4, 5}) = 2))
278275, 276, 277raltpg 4650 . . . . . . 7 (({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V) → (∀𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}} (♯‘𝑒) = 2 ↔ ((♯‘{3, 4}) = 2 ∧ (♯‘{3, 5}) = 2 ∧ (♯‘{4, 5}) = 2)))
2799, 278ax-mp 5 . . . . . 6 (∀𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}} (♯‘𝑒) = 2 ↔ ((♯‘{3, 4}) = 2 ∧ (♯‘{3, 5}) = 2 ∧ (♯‘{4, 5}) = 2))
280267, 271, 274, 279mpbir3an 1342 . . . . 5 𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}} (♯‘𝑒) = 2
281 ralunb 4146 . . . . 5 (∀𝑒 ∈ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})(♯‘𝑒) = 2 ↔ (∀𝑒 ∈ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}})(♯‘𝑒) = 2 ∧ ∀𝑒 ∈ {{3, 4}, {3, 5}, {4, 5}} (♯‘𝑒) = 2))
282263, 280, 281mpbir2an 711 . . . 4 𝑒 ∈ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})(♯‘𝑒) = 2
283 ssrab 4020 . . . 4 ((({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} ↔ ((({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ⊆ 𝒫 𝑉 ∧ ∀𝑒 ∈ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}})(♯‘𝑒) = 2))
284238, 282, 283mpbir2an 711 . . 3 (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
285 f1ss 6729 . . 3 ((𝐸:dom 𝐸1-1→(({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ∧ (({{0, 1}, {0, 2}, {1, 2}} ∪ {{0, 3}}) ∪ {{3, 4}, {3, 5}, {4, 5}}) ⊆ {𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) → 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
286182, 284, 285sylancl 586 . 2 ((((({0, 1} ∈ V ∧ {0, 2} ∈ V ∧ {1, 2} ∈ V) ∧ {0, 3} ∈ V ∧ ({3, 4} ∈ V ∧ {3, 5} ∈ V ∧ {4, 5} ∈ V)) ∧ (((({0, 1} ≠ {0, 2} ∧ {0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {0, 3}) ∧ ({0, 1} ≠ {3, 4} ∧ {0, 1} ≠ {3, 5} ∧ {0, 1} ≠ {4, 5})) ∧ (({0, 2} ≠ {1, 2} ∧ {0, 2} ≠ {0, 3}) ∧ ({0, 2} ≠ {3, 4} ∧ {0, 2} ≠ {3, 5} ∧ {0, 2} ≠ {4, 5})) ∧ ({1, 2} ≠ {0, 3} ∧ ({1, 2} ≠ {3, 4} ∧ {1, 2} ≠ {3, 5} ∧ {1, 2} ≠ {4, 5}))) ∧ (({0, 3} ≠ {3, 4} ∧ {0, 3} ≠ {3, 5} ∧ {0, 3} ≠ {4, 5}) ∧ ({3, 4} ≠ {3, 5} ∧ {3, 4} ≠ {4, 5} ∧ {3, 5} ≠ {4, 5})))) ∧ 𝐸 = ⟨“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”⟩) → 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})
287164, 165, 286mp2an 692 1 𝐸:dom 𝐸1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  cun 3896  wss 3898  𝒫 cpw 4549  {csn 4575  {cpr 4577  {ctp 4579   class class class wbr 5093  dom cdm 5619  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014  cle 11154  2c2 12187  3c3 12188  4c4 12189  5c5 12190  7c7 12192  0cn0 12388  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422  ⟨“cs7 14755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758  df-s4 14759  df-s5 14760  df-s6 14761  df-s7 14762
This theorem is referenced by:  usgrexmpl1  48146
  Copyright terms: Public domain W3C validator