| Step | Hyp | Ref
| Expression |
| 1 | | 5eluz3 12802 |
. . . 4
⊢ 5 ∈
(ℤ≥‘3) |
| 2 | | 3z 12526 |
. . . . . . 7
⊢ 3 ∈
ℤ |
| 3 | | 1lt3 12314 |
. . . . . . 7
⊢ 1 <
3 |
| 4 | | eluz2b1 12838 |
. . . . . . 7
⊢ (3 ∈
(ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 1 <
3)) |
| 5 | 2, 3, 4 | mpbir2an 711 |
. . . . . 6
⊢ 3 ∈
(ℤ≥‘2) |
| 6 | | fzo1lb 13634 |
. . . . . 6
⊢ (1 ∈
(1..^3) ↔ 3 ∈ (ℤ≥‘2)) |
| 7 | 5, 6 | mpbir 231 |
. . . . 5
⊢ 1 ∈
(1..^3) |
| 8 | | ceil5half3 47325 |
. . . . . . 7
⊢
(⌈‘(5 / 2)) = 3 |
| 9 | 8 | eqcomi 2738 |
. . . . . 6
⊢ 3 =
(⌈‘(5 / 2)) |
| 10 | 9 | oveq2i 7364 |
. . . . 5
⊢ (1..^3) =
(1..^(⌈‘(5 / 2))) |
| 11 | 7, 10 | eleqtri 2826 |
. . . 4
⊢ 1 ∈
(1..^(⌈‘(5 / 2))) |
| 12 | | gpgusgra 48042 |
. . . 4
⊢ ((5
∈ (ℤ≥‘3) ∧ 1 ∈ (1..^(⌈‘(5 /
2)))) → (5 gPetersenGr 1) ∈ USGraph) |
| 13 | 1, 11, 12 | mp2an 692 |
. . 3
⊢ (5
gPetersenGr 1) ∈ USGraph |
| 14 | | pgjsgr 48077 |
. . 3
⊢ (5
gPetersenGr 2) ∈ USGraph |
| 15 | | f1oi 6806 |
. . . 4
⊢ ( I
↾ ({0, 1} × (0..^5))):({0, 1} × (0..^5))–1-1-onto→({0,
1} × (0..^5)) |
| 16 | | 5nn 12232 |
. . . . 5
⊢ 5 ∈
ℕ |
| 17 | | pglem 48076 |
. . . . 5
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 18 | | eqidd 2730 |
. . . . . 6
⊢ ((5
∈ ℕ ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → ( I ↾
({0, 1} × (0..^5))) = ( I ↾ ({0, 1} ×
(0..^5)))) |
| 19 | 11 | a1i 11 |
. . . . . . 7
⊢ (2 ∈
(1..^(⌈‘(5 / 2))) → 1 ∈ (1..^(⌈‘(5 /
2)))) |
| 20 | | eqid 2729 |
. . . . . . . 8
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 21 | | eqid 2729 |
. . . . . . . 8
⊢ (0..^5) =
(0..^5) |
| 22 | 20, 21 | gpgvtx 48028 |
. . . . . . 7
⊢ ((5
∈ ℕ ∧ 1 ∈ (1..^(⌈‘(5 / 2)))) →
(Vtx‘(5 gPetersenGr 1)) = ({0, 1} × (0..^5))) |
| 23 | 19, 22 | sylan2 593 |
. . . . . 6
⊢ ((5
∈ ℕ ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) →
(Vtx‘(5 gPetersenGr 1)) = ({0, 1} × (0..^5))) |
| 24 | 20, 21 | gpgvtx 48028 |
. . . . . 6
⊢ ((5
∈ ℕ ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) →
(Vtx‘(5 gPetersenGr 2)) = ({0, 1} × (0..^5))) |
| 25 | 18, 23, 24 | f1oeq123d 6762 |
. . . . 5
⊢ ((5
∈ ℕ ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (( I
↾ ({0, 1} × (0..^5))):(Vtx‘(5 gPetersenGr 1))–1-1-onto→(Vtx‘(5 gPetersenGr 2)) ↔ ( I
↾ ({0, 1} × (0..^5))):({0, 1} × (0..^5))–1-1-onto→({0,
1} × (0..^5)))) |
| 26 | 16, 17, 25 | mp2an 692 |
. . . 4
⊢ (( I
↾ ({0, 1} × (0..^5))):(Vtx‘(5 gPetersenGr 1))–1-1-onto→(Vtx‘(5 gPetersenGr 2)) ↔ ( I
↾ ({0, 1} × (0..^5))):({0, 1} × (0..^5))–1-1-onto→({0,
1} × (0..^5))) |
| 27 | 15, 26 | mpbir 231 |
. . 3
⊢ ( I
↾ ({0, 1} × (0..^5))):(Vtx‘(5 gPetersenGr 1))–1-1-onto→(Vtx‘(5 gPetersenGr 2)) |
| 28 | 13, 14, 27 | 3pm3.2i 1340 |
. 2
⊢ ((5
gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ ( I
↾ ({0, 1} × (0..^5))):(Vtx‘(5 gPetersenGr 1))–1-1-onto→(Vtx‘(5 gPetersenGr
2))) |
| 29 | | 2eluzge1 12801 |
. . . . 5
⊢ 2 ∈
(ℤ≥‘1) |
| 30 | | eluzfz1 13452 |
. . . . 5
⊢ (2 ∈
(ℤ≥‘1) → 1 ∈ (1...2)) |
| 31 | 29, 30 | ax-mp 5 |
. . . 4
⊢ 1 ∈
(1...2) |
| 32 | | eqid 2729 |
. . . . 5
⊢ (5
gPetersenGr 1) = (5 gPetersenGr 1) |
| 33 | 32 | gpg5gricstgr3 48075 |
. . . 4
⊢ ((1
∈ (1...2) ∧ 𝑣
∈ (Vtx‘(5 gPetersenGr 1))) → ((5 gPetersenGr 1) ISubGr ((5
gPetersenGr 1) ClNeighbVtx 𝑣)) ≃𝑔𝑟
(StarGr‘3)) |
| 34 | 31, 33 | mpan 690 |
. . 3
⊢ (𝑣 ∈ (Vtx‘(5
gPetersenGr 1)) → ((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1) ClNeighbVtx
𝑣))
≃𝑔𝑟 (StarGr‘3)) |
| 35 | 34 | rgen 3046 |
. 2
⊢
∀𝑣 ∈
(Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1)
ClNeighbVtx 𝑣))
≃𝑔𝑟 (StarGr‘3) |
| 36 | | eluzfz2 13453 |
. . . . 5
⊢ (2 ∈
(ℤ≥‘1) → 2 ∈ (1...2)) |
| 37 | 29, 36 | ax-mp 5 |
. . . 4
⊢ 2 ∈
(1...2) |
| 38 | | eqid 2729 |
. . . . 5
⊢ (5
gPetersenGr 2) = (5 gPetersenGr 2) |
| 39 | 38 | gpg5gricstgr3 48075 |
. . . 4
⊢ ((2
∈ (1...2) ∧ 𝑤
∈ (Vtx‘(5 gPetersenGr 2))) → ((5 gPetersenGr 2) ISubGr ((5
gPetersenGr 2) ClNeighbVtx 𝑤)) ≃𝑔𝑟
(StarGr‘3)) |
| 40 | 37, 39 | mpan 690 |
. . 3
⊢ (𝑤 ∈ (Vtx‘(5
gPetersenGr 2)) → ((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx
𝑤))
≃𝑔𝑟 (StarGr‘3)) |
| 41 | 40 | rgen 3046 |
. 2
⊢
∀𝑤 ∈
(Vtx‘(5 gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2)
ClNeighbVtx 𝑤))
≃𝑔𝑟 (StarGr‘3) |
| 42 | | 3nn0 12420 |
. . 3
⊢ 3 ∈
ℕ0 |
| 43 | | eqid 2729 |
. . 3
⊢
(Vtx‘(5 gPetersenGr 1)) = (Vtx‘(5 gPetersenGr
1)) |
| 44 | | eqid 2729 |
. . 3
⊢
(Vtx‘(5 gPetersenGr 2)) = (Vtx‘(5 gPetersenGr
2)) |
| 45 | 42, 43, 44 | clnbgr3stgrgrlim 48004 |
. 2
⊢ ((((5
gPetersenGr 1) ∈ USGraph ∧ (5 gPetersenGr 2) ∈ USGraph ∧ ( I
↾ ({0, 1} × (0..^5))):(Vtx‘(5 gPetersenGr 1))–1-1-onto→(Vtx‘(5 gPetersenGr 2))) ∧
∀𝑣 ∈
(Vtx‘(5 gPetersenGr 1))((5 gPetersenGr 1) ISubGr ((5 gPetersenGr 1)
ClNeighbVtx 𝑣))
≃𝑔𝑟 (StarGr‘3) ∧ ∀𝑤 ∈ (Vtx‘(5
gPetersenGr 2))((5 gPetersenGr 2) ISubGr ((5 gPetersenGr 2) ClNeighbVtx 𝑤))
≃𝑔𝑟 (StarGr‘3)) → ( I ↾ ({0,
1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5 gPetersenGr
2))) |
| 46 | 28, 35, 41, 45 | mp3an 1463 |
1
⊢ ( I
↾ ({0, 1} × (0..^5))) ∈ ((5 gPetersenGr 1) GraphLocIso (5
gPetersenGr 2)) |