MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz Structured version   Visualization version   GIF version

Theorem hashfz 14419
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 12858 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 eluzelz 12863 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
3 1z 12623 . . . . . 6 1 ∈ ℤ
4 zsubcl 12635 . . . . . 6 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ)
53, 1, 4sylancr 586 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (1 − 𝐴) ∈ ℤ)
6 fzen 13551 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
71, 2, 5, 6syl3anc 1369 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
81zcnd 12698 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
9 ax-1cn 11197 . . . . . 6 1 ∈ ℂ
10 pncan3 11499 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1)
118, 9, 10sylancl 585 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐴 + (1 − 𝐴)) = 1)
12 1cnd 11240 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
132zcnd 12698 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1413, 8subcld 11602 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
1513, 12, 8addsub12d 11625 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵𝐴)))
1612, 14, 15comraddd 11459 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵𝐴) + 1))
1711, 16oveq12d 7438 . . . 4 (𝐵 ∈ (ℤ𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵𝐴) + 1)))
187, 17breqtrd 5174 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1)))
19 hasheni 14340 . . 3 ((𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1)) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))))
2018, 19syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))))
21 uznn0sub 12892 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℕ0)
22 peano2nn0 12543 . . 3 ((𝐵𝐴) ∈ ℕ0 → ((𝐵𝐴) + 1) ∈ ℕ0)
23 hashfz1 14338 . . 3 (((𝐵𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
2421, 22, 233syl 18 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
2520, 24eqtrd 2768 1 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  cen 8961  cc 11137  1c1 11140   + caddc 11142  cmin 11475  0cn0 12503  cz 12589  cuz 12853  ...cfz 13517  chash 14322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-hash 14323
This theorem is referenced by:  fzsdom2  14420  hashfzo  14421  hashfzp1  14423  hashfz0  14424  0sgmppw  27144  logfaclbnd  27168  gausslemma2dlem5  27317  ballotlem2  34108  subfacp1lem5  34794  fzisoeu  44682  stoweidlem11  45399  stoweidlem26  45414
  Copyright terms: Public domain W3C validator