MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz Structured version   Visualization version   GIF version

Theorem hashfz 14353
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 12759 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 eluzelz 12764 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
3 1z 12524 . . . . . 6 1 ∈ ℤ
4 zsubcl 12536 . . . . . 6 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ)
53, 1, 4sylancr 587 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (1 − 𝐴) ∈ ℤ)
6 fzen 13463 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
71, 2, 5, 6syl3anc 1373 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
81zcnd 12600 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
9 ax-1cn 11086 . . . . . 6 1 ∈ ℂ
10 pncan3 11390 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1)
118, 9, 10sylancl 586 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐴 + (1 − 𝐴)) = 1)
12 1cnd 11129 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
132zcnd 12600 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1413, 8subcld 11494 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
1513, 12, 8addsub12d 11517 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵𝐴)))
1612, 14, 15comraddd 11349 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵𝐴) + 1))
1711, 16oveq12d 7371 . . . 4 (𝐵 ∈ (ℤ𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵𝐴) + 1)))
187, 17breqtrd 5121 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1)))
19 hasheni 14274 . . 3 ((𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1)) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))))
2018, 19syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))))
21 uznn0sub 12793 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℕ0)
22 peano2nn0 12443 . . 3 ((𝐵𝐴) ∈ ℕ0 → ((𝐵𝐴) + 1) ∈ ℕ0)
23 hashfz1 14272 . . 3 (((𝐵𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
2421, 22, 233syl 18 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
2520, 24eqtrd 2764 1 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cen 8876  cc 11026  1c1 11029   + caddc 11031  cmin 11366  0cn0 12403  cz 12490  cuz 12754  ...cfz 13429  chash 14256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-hash 14257
This theorem is referenced by:  fzsdom2  14354  hashfzo  14355  hashfzp1  14357  hashfz0  14358  0sgmppw  27126  logfaclbnd  27150  gausslemma2dlem5  27299  ballotlem2  34476  subfacp1lem5  35176  fzisoeu  45302  stoweidlem11  46012  stoweidlem26  46027
  Copyright terms: Public domain W3C validator