MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashfz Structured version   Visualization version   GIF version

Theorem hashfz 14341
Description: Value of the numeric cardinality of a nonempty integer range. (Contributed by Stefan O'Rear, 12-Sep-2014.) (Proof shortened by Mario Carneiro, 15-Apr-2015.)
Assertion
Ref Expression
hashfz (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))

Proof of Theorem hashfz
StepHypRef Expression
1 eluzel2 12747 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 eluzelz 12752 . . . . 5 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
3 1z 12512 . . . . . 6 1 ∈ ℤ
4 zsubcl 12524 . . . . . 6 ((1 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (1 − 𝐴) ∈ ℤ)
53, 1, 4sylancr 587 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (1 − 𝐴) ∈ ℤ)
6 fzen 13448 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (1 − 𝐴) ∈ ℤ) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
71, 2, 5, 6syl3anc 1373 . . . 4 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))))
81zcnd 12588 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
9 ax-1cn 11075 . . . . . 6 1 ∈ ℂ
10 pncan3 11379 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 + (1 − 𝐴)) = 1)
118, 9, 10sylancl 586 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐴 + (1 − 𝐴)) = 1)
12 1cnd 11118 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
132zcnd 12588 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1413, 8subcld 11483 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℂ)
1513, 12, 8addsub12d 11506 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = (1 + (𝐵𝐴)))
1612, 14, 15comraddd 11338 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐵 + (1 − 𝐴)) = ((𝐵𝐴) + 1))
1711, 16oveq12d 7373 . . . 4 (𝐵 ∈ (ℤ𝐴) → ((𝐴 + (1 − 𝐴))...(𝐵 + (1 − 𝐴))) = (1...((𝐵𝐴) + 1)))
187, 17breqtrd 5121 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1)))
19 hasheni 14262 . . 3 ((𝐴...𝐵) ≈ (1...((𝐵𝐴) + 1)) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))))
2018, 19syl 17 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = (♯‘(1...((𝐵𝐴) + 1))))
21 uznn0sub 12777 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐴) ∈ ℕ0)
22 peano2nn0 12432 . . 3 ((𝐵𝐴) ∈ ℕ0 → ((𝐵𝐴) + 1) ∈ ℕ0)
23 hashfz1 14260 . . 3 (((𝐵𝐴) + 1) ∈ ℕ0 → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
2421, 22, 233syl 18 . 2 (𝐵 ∈ (ℤ𝐴) → (♯‘(1...((𝐵𝐴) + 1))) = ((𝐵𝐴) + 1))
2520, 24eqtrd 2768 1 (𝐵 ∈ (ℤ𝐴) → (♯‘(𝐴...𝐵)) = ((𝐵𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  cen 8876  cc 11015  1c1 11018   + caddc 11020  cmin 11355  0cn0 12392  cz 12479  cuz 12742  ...cfz 13414  chash 14244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-hash 14245
This theorem is referenced by:  fzsdom2  14342  hashfzo  14343  hashfzp1  14345  hashfz0  14346  0sgmppw  27156  logfaclbnd  27180  gausslemma2dlem5  27329  ballotlem2  34574  subfacp1lem5  35300  fzisoeu  45464  stoweidlem11  46171  stoweidlem26  46186
  Copyright terms: Public domain W3C validator