MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe11 Structured version   Visualization version   GIF version

Theorem coe11 26306
Description: The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
Assertion
Ref Expression
coe11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺𝐴 = 𝐵))

Proof of Theorem coe11
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . 3 (𝐹 = 𝐺 → (coeff‘𝐹) = (coeff‘𝐺))
2 coefv0.1 . . 3 𝐴 = (coeff‘𝐹)
3 coeadd.2 . . 3 𝐵 = (coeff‘𝐺)
41, 2, 33eqtr4g 2799 . 2 (𝐹 = 𝐺𝐴 = 𝐵)
5 simp3 1137 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
65cnveqd 5888 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
76imaeq1d 6078 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (𝐴 “ (ℂ ∖ {0})) = (𝐵 “ (ℂ ∖ {0})))
87supeq1d 9483 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) = sup((𝐵 “ (ℂ ∖ {0})), ℕ0, < ))
92dgrval 26281 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
1093ad2ant1 1132 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
113dgrval 26281 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) = sup((𝐵 “ (ℂ ∖ {0})), ℕ0, < ))
12113ad2ant2 1133 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐺) = sup((𝐵 “ (ℂ ∖ {0})), ℕ0, < ))
138, 10, 123eqtr4d 2784 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = (deg‘𝐺))
1413oveq2d 7446 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (0...(deg‘𝐹)) = (0...(deg‘𝐺)))
15 simpl3 1192 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → 𝐴 = 𝐵)
1615fveq1d 6908 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → (𝐴𝑘) = (𝐵𝑘))
1716oveq1d 7445 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((𝐴𝑘) · (𝑧𝑘)) = ((𝐵𝑘) · (𝑧𝑘)))
1814, 17sumeq12dv 15738 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵𝑘) · (𝑧𝑘)))
1918mpteq2dv 5249 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵𝑘) · (𝑧𝑘))))
20 eqid 2734 . . . . . 6 (deg‘𝐹) = (deg‘𝐹)
212, 20coeid 26291 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (𝑧𝑘))))
22213ad2ant1 1132 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴𝑘) · (𝑧𝑘))))
23 eqid 2734 . . . . . 6 (deg‘𝐺) = (deg‘𝐺)
243, 23coeid 26291 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵𝑘) · (𝑧𝑘))))
25243ad2ant2 1133 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵𝑘) · (𝑧𝑘))))
2619, 22, 253eqtr4d 2784 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺)
27263expia 1120 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 = 𝐵𝐹 = 𝐺))
284, 27impbid2 226 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  cdif 3959  {csn 4630  cmpt 5230  ccnv 5687  cima 5691  cfv 6562  (class class class)co 7430  supcsup 9477  cc 11150  0cc0 11152   · cmul 11157   < clt 11292  0cn0 12523  ...cfz 13543  cexp 14098  Σcsu 15718  Polycply 26237  coeffccoe 26239  degcdgr 26240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-0p 25718  df-ply 26241  df-coe 26243  df-dgr 26244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator