![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe11 | Structured version Visualization version GIF version |
Description: The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
coefv0.1 | ⊢ 𝐴 = (coeff‘𝐹) |
coeadd.2 | ⊢ 𝐵 = (coeff‘𝐺) |
Ref | Expression |
---|---|
coe11 | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . 3 ⊢ (𝐹 = 𝐺 → (coeff‘𝐹) = (coeff‘𝐺)) | |
2 | coefv0.1 | . . 3 ⊢ 𝐴 = (coeff‘𝐹) | |
3 | coeadd.2 | . . 3 ⊢ 𝐵 = (coeff‘𝐺) | |
4 | 1, 2, 3 | 3eqtr4g 2793 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐵) |
5 | simp3 1136 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
6 | 5 | cnveqd 5873 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → ◡𝐴 = ◡𝐵) |
7 | 6 | imaeq1d 6057 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (◡𝐴 “ (ℂ ∖ {0})) = (◡𝐵 “ (ℂ ∖ {0}))) |
8 | 7 | supeq1d 9464 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
9 | 2 | dgrval 26156 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
10 | 9 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
11 | 3 | dgrval 26156 | . . . . . . . . 9 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
12 | 11 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
13 | 8, 10, 12 | 3eqtr4d 2778 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = (deg‘𝐺)) |
14 | 13 | oveq2d 7431 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (0...(deg‘𝐹)) = (0...(deg‘𝐺))) |
15 | simpl3 1191 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → 𝐴 = 𝐵) | |
16 | 15 | fveq1d 6894 | . . . . . . 7 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → (𝐴‘𝑘) = (𝐵‘𝑘)) |
17 | 16 | oveq1d 7430 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐵‘𝑘) · (𝑧↑𝑘))) |
18 | 14, 17 | sumeq12dv 15679 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘))) |
19 | 18 | mpteq2dv 5245 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
20 | eqid 2728 | . . . . . 6 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
21 | 2, 20 | coeid 26166 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
22 | 21 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
23 | eqid 2728 | . . . . . 6 ⊢ (deg‘𝐺) = (deg‘𝐺) | |
24 | 3, 23 | coeid 26166 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
25 | 24 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
26 | 19, 22, 25 | 3eqtr4d 2778 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) |
27 | 26 | 3expia 1119 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 = 𝐵 → 𝐹 = 𝐺)) |
28 | 4, 27 | impbid2 225 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∖ cdif 3942 {csn 4625 ↦ cmpt 5226 ◡ccnv 5672 “ cima 5676 ‘cfv 6543 (class class class)co 7415 supcsup 9458 ℂcc 11131 0cc0 11133 · cmul 11138 < clt 11273 ℕ0cn0 12497 ...cfz 13511 ↑cexp 14053 Σcsu 15659 Polycply 26112 coeffccoe 26114 degcdgr 26115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-fz 13512 df-fzo 13655 df-fl 13784 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-rlim 15460 df-sum 15660 df-0p 25593 df-ply 26116 df-coe 26118 df-dgr 26119 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |