| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe11 | Structured version Visualization version GIF version | ||
| Description: The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| coefv0.1 | ⊢ 𝐴 = (coeff‘𝐹) |
| coeadd.2 | ⊢ 𝐵 = (coeff‘𝐺) |
| Ref | Expression |
|---|---|
| coe11 | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6875 | . . 3 ⊢ (𝐹 = 𝐺 → (coeff‘𝐹) = (coeff‘𝐺)) | |
| 2 | coefv0.1 | . . 3 ⊢ 𝐴 = (coeff‘𝐹) | |
| 3 | coeadd.2 | . . 3 ⊢ 𝐵 = (coeff‘𝐺) | |
| 4 | 1, 2, 3 | 3eqtr4g 2795 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐵) |
| 5 | simp3 1138 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 6 | 5 | cnveqd 5855 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → ◡𝐴 = ◡𝐵) |
| 7 | 6 | imaeq1d 6046 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (◡𝐴 “ (ℂ ∖ {0})) = (◡𝐵 “ (ℂ ∖ {0}))) |
| 8 | 7 | supeq1d 9456 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
| 9 | 2 | dgrval 26183 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 10 | 9 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
| 11 | 3 | dgrval 26183 | . . . . . . . . 9 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
| 12 | 11 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
| 13 | 8, 10, 12 | 3eqtr4d 2780 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = (deg‘𝐺)) |
| 14 | 13 | oveq2d 7419 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (0...(deg‘𝐹)) = (0...(deg‘𝐺))) |
| 15 | simpl3 1194 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → 𝐴 = 𝐵) | |
| 16 | 15 | fveq1d 6877 | . . . . . . 7 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → (𝐴‘𝑘) = (𝐵‘𝑘)) |
| 17 | 16 | oveq1d 7418 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 18 | 14, 17 | sumeq12dv 15720 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘))) |
| 19 | 18 | mpteq2dv 5215 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 20 | eqid 2735 | . . . . . 6 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 21 | 2, 20 | coeid 26193 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 23 | eqid 2735 | . . . . . 6 ⊢ (deg‘𝐺) = (deg‘𝐺) | |
| 24 | 3, 23 | coeid 26193 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 25 | 24 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 26 | 19, 22, 25 | 3eqtr4d 2780 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) |
| 27 | 26 | 3expia 1121 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 = 𝐵 → 𝐹 = 𝐺)) |
| 28 | 4, 27 | impbid2 226 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 {csn 4601 ↦ cmpt 5201 ◡ccnv 5653 “ cima 5657 ‘cfv 6530 (class class class)co 7403 supcsup 9450 ℂcc 11125 0cc0 11127 · cmul 11132 < clt 11267 ℕ0cn0 12499 ...cfz 13522 ↑cexp 14077 Σcsu 15700 Polycply 26139 coeffccoe 26141 degcdgr 26142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-rlim 15503 df-sum 15701 df-0p 25621 df-ply 26143 df-coe 26145 df-dgr 26146 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |