Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe11 | Structured version Visualization version GIF version |
Description: The coefficient function is one-to-one, so if the coefficients are equal then the functions are equal and vice-versa. (Contributed by Mario Carneiro, 24-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
coefv0.1 | ⊢ 𝐴 = (coeff‘𝐹) |
coeadd.2 | ⊢ 𝐵 = (coeff‘𝐺) |
Ref | Expression |
---|---|
coe11 | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . 3 ⊢ (𝐹 = 𝐺 → (coeff‘𝐹) = (coeff‘𝐺)) | |
2 | coefv0.1 | . . 3 ⊢ 𝐴 = (coeff‘𝐹) | |
3 | coeadd.2 | . . 3 ⊢ 𝐵 = (coeff‘𝐺) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | . 2 ⊢ (𝐹 = 𝐺 → 𝐴 = 𝐵) |
5 | simp3 1136 | . . . . . . . . . . 11 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
6 | 5 | cnveqd 5781 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → ◡𝐴 = ◡𝐵) |
7 | 6 | imaeq1d 5965 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (◡𝐴 “ (ℂ ∖ {0})) = (◡𝐵 “ (ℂ ∖ {0}))) |
8 | 7 | supeq1d 9166 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < ) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
9 | 2 | dgrval 25370 | . . . . . . . . 9 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
10 | 9 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = sup((◡𝐴 “ (ℂ ∖ {0})), ℕ0, < )) |
11 | 3 | dgrval 25370 | . . . . . . . . 9 ⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
12 | 11 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐺) = sup((◡𝐵 “ (ℂ ∖ {0})), ℕ0, < )) |
13 | 8, 10, 12 | 3eqtr4d 2789 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (deg‘𝐹) = (deg‘𝐺)) |
14 | 13 | oveq2d 7284 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (0...(deg‘𝐹)) = (0...(deg‘𝐺))) |
15 | simpl3 1191 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → 𝐴 = 𝐵) | |
16 | 15 | fveq1d 6770 | . . . . . . 7 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → (𝐴‘𝑘) = (𝐵‘𝑘)) |
17 | 16 | oveq1d 7283 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐵‘𝑘) · (𝑧↑𝑘))) |
18 | 14, 17 | sumeq12dv 15399 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘))) |
19 | 18 | mpteq2dv 5180 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
20 | eqid 2739 | . . . . . 6 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
21 | 2, 20 | coeid 25380 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
22 | 21 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))((𝐴‘𝑘) · (𝑧↑𝑘)))) |
23 | eqid 2739 | . . . . . 6 ⊢ (deg‘𝐺) = (deg‘𝐺) | |
24 | 3, 23 | coeid 25380 | . . . . 5 ⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
25 | 24 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐺))((𝐵‘𝑘) · (𝑧↑𝑘)))) |
26 | 19, 22, 25 | 3eqtr4d 2789 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐴 = 𝐵) → 𝐹 = 𝐺) |
27 | 26 | 3expia 1119 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴 = 𝐵 → 𝐹 = 𝐺)) |
28 | 4, 27 | impbid2 225 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 = 𝐺 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 {csn 4566 ↦ cmpt 5161 ◡ccnv 5587 “ cima 5591 ‘cfv 6430 (class class class)co 7268 supcsup 9160 ℂcc 10853 0cc0 10855 · cmul 10860 < clt 10993 ℕ0cn0 12216 ...cfz 13221 ↑cexp 13763 Σcsu 15378 Polycply 25326 coeffccoe 25328 degcdgr 25329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-fl 13493 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-rlim 15179 df-sum 15379 df-0p 24815 df-ply 25330 df-coe 25332 df-dgr 25333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |