![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxluc | Structured version Visualization version GIF version |
Description: The X sequence is a Lucas (second-order integer recurrence) sequence. Part 3 of equation 2.11 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 14-Oct-2014.) |
Ref | Expression |
---|---|
rmxluc | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 11838 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | frmx 38912 | . . . . . . . 8 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
3 | 2 | fovcl 7095 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℕ0) |
4 | 3 | nn0cnd 11769 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℂ) |
5 | 1, 4 | sylan2 583 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℂ) |
6 | peano2z 11836 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
7 | 2 | fovcl 7095 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) ∈ ℕ0) |
8 | 7 | nn0cnd 11769 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) ∈ ℂ) |
9 | 6, 8 | sylan2 583 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) ∈ ℂ) |
10 | 5, 9 | addcomd 10642 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑁 − 1)) + (𝐴 Xrm (𝑁 + 1))) = ((𝐴 Xrm (𝑁 + 1)) + (𝐴 Xrm (𝑁 − 1)))) |
11 | rmxp1 38931 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | |
12 | rmxm1 38933 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) = ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) | |
13 | 11, 12 | oveq12d 6994 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑁 + 1)) + (𝐴 Xrm (𝑁 − 1))) = ((((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) + ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))))) |
14 | 2 | fovcl 7095 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
15 | 14 | nn0cnd 11769 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ) |
16 | eluzelcn 12070 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
17 | 16 | adantr 473 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ) |
18 | 15, 17 | mulcld 10460 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) ∈ ℂ) |
19 | rmspecnonsq 38906 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | |
20 | 19 | eldifad 3841 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
21 | 20 | nncnd 11457 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
22 | 21 | adantr 473 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ ℂ) |
23 | frmy 38913 | . . . . . . . . 9 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
24 | 23 | fovcl 7095 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
25 | 24 | zcnd 11901 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
26 | 22, 25 | mulcld 10460 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)) ∈ ℂ) |
27 | 17, 15 | mulcld 10460 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 · (𝐴 Xrm 𝑁)) ∈ ℂ) |
28 | 18, 26, 27 | ppncand 10838 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) + ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) = (((𝐴 Xrm 𝑁) · 𝐴) + (𝐴 · (𝐴 Xrm 𝑁)))) |
29 | 15, 17 | mulcomd 10461 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Xrm 𝑁))) |
30 | 29 | oveq1d 6991 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · 𝐴) + (𝐴 · (𝐴 Xrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) + (𝐴 · (𝐴 Xrm 𝑁)))) |
31 | 2cnd 11518 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 2 ∈ ℂ) | |
32 | 31, 17, 15 | mulassd 10463 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((2 · 𝐴) · (𝐴 Xrm 𝑁)) = (2 · (𝐴 · (𝐴 Xrm 𝑁)))) |
33 | 27 | 2timesd 11690 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (2 · (𝐴 · (𝐴 Xrm 𝑁))) = ((𝐴 · (𝐴 Xrm 𝑁)) + (𝐴 · (𝐴 Xrm 𝑁)))) |
34 | 32, 33 | eqtr2d 2815 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐴 Xrm 𝑁)) + (𝐴 · (𝐴 Xrm 𝑁))) = ((2 · 𝐴) · (𝐴 Xrm 𝑁))) |
35 | 28, 30, 34 | 3eqtrd 2818 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((((𝐴 Xrm 𝑁) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁))) + ((𝐴 · (𝐴 Xrm 𝑁)) − (((𝐴↑2) − 1) · (𝐴 Yrm 𝑁)))) = ((2 · 𝐴) · (𝐴 Xrm 𝑁))) |
36 | 10, 13, 35 | 3eqtrd 2818 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm (𝑁 − 1)) + (𝐴 Xrm (𝑁 + 1))) = ((2 · 𝐴) · (𝐴 Xrm 𝑁))) |
37 | 2cn 11515 | . . . . . 6 ⊢ 2 ∈ ℂ | |
38 | mulcl 10419 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ) | |
39 | 37, 17, 38 | sylancr 578 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (2 · 𝐴) ∈ ℂ) |
40 | 39, 15 | mulcld 10460 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((2 · 𝐴) · (𝐴 Xrm 𝑁)) ∈ ℂ) |
41 | 40, 5, 9 | subaddd 10816 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1))) = (𝐴 Xrm (𝑁 + 1)) ↔ ((𝐴 Xrm (𝑁 − 1)) + (𝐴 Xrm (𝑁 + 1))) = ((2 · 𝐴) · (𝐴 Xrm 𝑁)))) |
42 | 36, 41 | mpbird 249 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1))) = (𝐴 Xrm (𝑁 + 1))) |
43 | 42 | eqcomd 2784 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm (𝑁 + 1)) = (((2 · 𝐴) · (𝐴 Xrm 𝑁)) − (𝐴 Xrm (𝑁 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ‘cfv 6188 (class class class)co 6976 ℂcc 10333 1c1 10336 + caddc 10338 · cmul 10340 − cmin 10670 ℕcn 11439 2c2 11495 ℕ0cn0 11707 ℤcz 11793 ℤ≥cuz 12058 ↑cexp 13244 ◻NNcsquarenn 38835 Xrm crmx 38899 Yrm crmy 38900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-omul 7910 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-acn 9165 df-cda 9388 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-xnn0 11780 df-z 11794 df-dec 11912 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ioo 12558 df-ioc 12559 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-fl 12977 df-mod 13053 df-seq 13185 df-exp 13245 df-fac 13449 df-bc 13478 df-hash 13506 df-shft 14287 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-limsup 14689 df-clim 14706 df-rlim 14707 df-sum 14904 df-ef 15281 df-sin 15283 df-cos 15284 df-pi 15286 df-dvds 15468 df-gcd 15704 df-numer 15931 df-denom 15932 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-hom 16445 df-cco 16446 df-rest 16552 df-topn 16553 df-0g 16571 df-gsum 16572 df-topgen 16573 df-pt 16574 df-prds 16577 df-xrs 16631 df-qtop 16636 df-imas 16637 df-xps 16639 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-fbas 20244 df-fg 20245 df-cnfld 20248 df-top 21206 df-topon 21223 df-topsp 21245 df-bases 21258 df-cld 21331 df-ntr 21332 df-cls 21333 df-nei 21410 df-lp 21448 df-perf 21449 df-cn 21539 df-cnp 21540 df-haus 21627 df-tx 21874 df-hmeo 22067 df-fil 22158 df-fm 22250 df-flim 22251 df-flf 22252 df-xms 22633 df-ms 22634 df-tms 22635 df-cncf 23189 df-limc 24167 df-dv 24168 df-log 24841 df-squarenn 38840 df-pell1qr 38841 df-pell14qr 38842 df-pell1234qr 38843 df-pellfund 38844 df-rmx 38901 df-rmy 38902 |
This theorem is referenced by: jm2.18 38987 |
Copyright terms: Public domain | W3C validator |