![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmyluc | Structured version Visualization version GIF version |
Description: The Y sequence is a Lucas sequence, definable via this second-order recurrence with rmy0 39024 and rmy1 39025. Part 3 of equation 2.12 of [JonesMatijasevic] p. 695. JonesMatijasevic uses this theorem to redefine the X and Y sequences to have domain (ℤ × ℤ), which simplifies some later theorems. It may shorten the derivation to use this as our initial definition. Incidentally, the X sequence satisfies the exact same recurrence. (Contributed by Stefan O'Rear, 1-Oct-2014.) |
Ref | Expression |
---|---|
rmyluc | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = ((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2z 11873 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | |
2 | frmy 39009 | . . . . 5 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
3 | 2 | fovcl 7138 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℤ) |
4 | 1, 3 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℤ) |
5 | 4 | zcnd 11938 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℂ) |
6 | 2cn 11562 | . . . 4 ⊢ 2 ∈ ℂ | |
7 | 2 | fovcl 7138 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
8 | 7 | zcnd 11938 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
9 | eluzelcn 12105 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ) |
11 | 8, 10 | mulcld 10510 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 𝐴) ∈ ℂ) |
12 | mulcl 10470 | . . . 4 ⊢ ((2 ∈ ℂ ∧ ((𝐴 Yrm 𝑁) · 𝐴) ∈ ℂ) → (2 · ((𝐴 Yrm 𝑁) · 𝐴)) ∈ ℂ) | |
13 | 6, 11, 12 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (2 · ((𝐴 Yrm 𝑁) · 𝐴)) ∈ ℂ) |
14 | peano2zm 11875 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
15 | 2 | fovcl 7138 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ) |
16 | 14, 15 | sylan2 592 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ) |
17 | 16 | zcnd 11938 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℂ) |
18 | 13, 17 | subcld 10847 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1))) ∈ ℂ) |
19 | rmyp1 39028 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = (((𝐴 Yrm 𝑁) · 𝐴) + (𝐴 Xrm 𝑁))) | |
20 | rmym1 39030 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) | |
21 | 19, 20 | oveq12d 7037 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 + 1)) + (𝐴 Yrm (𝑁 − 1))) = ((((𝐴 Yrm 𝑁) · 𝐴) + (𝐴 Xrm 𝑁)) + (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)))) |
22 | frmx 39008 | . . . . . 6 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
23 | 22 | fovcl 7138 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
24 | 23 | nn0cnd 11807 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ) |
25 | 11, 24, 11 | ppncand 10887 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((((𝐴 Yrm 𝑁) · 𝐴) + (𝐴 Xrm 𝑁)) + (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) = (((𝐴 Yrm 𝑁) · 𝐴) + ((𝐴 Yrm 𝑁) · 𝐴))) |
26 | 13, 17 | npcand 10851 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm (𝑁 − 1))) = (2 · ((𝐴 Yrm 𝑁) · 𝐴))) |
27 | 11 | 2timesd 11730 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (2 · ((𝐴 Yrm 𝑁) · 𝐴)) = (((𝐴 Yrm 𝑁) · 𝐴) + ((𝐴 Yrm 𝑁) · 𝐴))) |
28 | 26, 27 | eqtr2d 2831 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · 𝐴) + ((𝐴 Yrm 𝑁) · 𝐴)) = (((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm (𝑁 − 1)))) |
29 | 21, 25, 28 | 3eqtrd 2834 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm (𝑁 + 1)) + (𝐴 Yrm (𝑁 − 1))) = (((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm (𝑁 − 1)))) |
30 | 5, 18, 17, 29 | addcan2ad 10695 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) = ((2 · ((𝐴 Yrm 𝑁) · 𝐴)) − (𝐴 Yrm (𝑁 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ‘cfv 6228 (class class class)co 7019 ℂcc 10384 1c1 10387 + caddc 10389 · cmul 10391 − cmin 10719 2c2 11542 ℕ0cn0 11747 ℤcz 11831 ℤ≥cuz 12093 Xrm crmx 38995 Yrm crmy 38996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-inf2 8953 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 ax-pre-sup 10464 ax-addf 10465 ax-mulf 10466 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-iin 4830 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-se 5406 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-isom 6237 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-of 7270 df-om 7440 df-1st 7548 df-2nd 7549 df-supp 7685 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-2o 7957 df-oadd 7960 df-omul 7961 df-er 8142 df-map 8261 df-pm 8262 df-ixp 8314 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-fsupp 8683 df-fi 8724 df-sup 8755 df-inf 8756 df-oi 8823 df-card 9217 df-acn 9220 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-div 11148 df-nn 11489 df-2 11550 df-3 11551 df-4 11552 df-5 11553 df-6 11554 df-7 11555 df-8 11556 df-9 11557 df-n0 11748 df-xnn0 11818 df-z 11832 df-dec 11949 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ioo 12592 df-ioc 12593 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-mod 13088 df-seq 13220 df-exp 13280 df-fac 13484 df-bc 13513 df-hash 13541 df-shft 14260 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-limsup 14662 df-clim 14679 df-rlim 14680 df-sum 14877 df-ef 15254 df-sin 15256 df-cos 15257 df-pi 15259 df-dvds 15441 df-gcd 15677 df-numer 15904 df-denom 15905 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-mulr 16408 df-starv 16409 df-sca 16410 df-vsca 16411 df-ip 16412 df-tset 16413 df-ple 16414 df-ds 16416 df-unif 16417 df-hom 16418 df-cco 16419 df-rest 16525 df-topn 16526 df-0g 16544 df-gsum 16545 df-topgen 16546 df-pt 16547 df-prds 16550 df-xrs 16604 df-qtop 16609 df-imas 16610 df-xps 16612 df-mre 16686 df-mrc 16687 df-acs 16689 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-submnd 17775 df-mulg 17982 df-cntz 18188 df-cmn 18635 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-fbas 20224 df-fg 20225 df-cnfld 20228 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-cld 21311 df-ntr 21312 df-cls 21313 df-nei 21390 df-lp 21428 df-perf 21429 df-cn 21519 df-cnp 21520 df-haus 21607 df-tx 21854 df-hmeo 22047 df-fil 22138 df-fm 22230 df-flim 22231 df-flf 22232 df-xms 22613 df-ms 22614 df-tms 22615 df-cncf 23169 df-limc 24147 df-dv 24148 df-log 24821 df-squarenn 38936 df-pell1qr 38937 df-pell14qr 38938 df-pell1234qr 38939 df-pellfund 38940 df-rmx 38997 df-rmy 38998 |
This theorem is referenced by: rmyluc2 39033 jm2.18 39083 jm2.15nn0 39098 jm2.16nn0 39099 |
Copyright terms: Public domain | W3C validator |