![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmym1 | Structured version Visualization version GIF version |
Description: Subtraction of 1 formula for Y sequence. Part 2 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
Ref | Expression |
---|---|
rmym1 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11584 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 467 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
3 | ax-1cn 10196 | . . . . 5 ⊢ 1 ∈ ℂ | |
4 | negsub 10531 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1)) | |
5 | 2, 3, 4 | sylancl 574 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1)) |
6 | 5 | eqcomd 2777 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 − 1) = (𝑁 + -1)) |
7 | 6 | oveq2d 6809 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (𝐴 Yrm (𝑁 + -1))) |
8 | neg1z 11615 | . . 3 ⊢ -1 ∈ ℤ | |
9 | rmyadd 38022 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Yrm (𝑁 + -1)) = (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)))) | |
10 | 8, 9 | mp3an3 1561 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + -1)) = (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)))) |
11 | 1z 11609 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
12 | rmxneg 38015 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) | |
13 | 11, 12 | mpan2 671 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) |
14 | rmx1 38017 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) = 𝐴) | |
15 | 13, 14 | eqtrd 2805 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = 𝐴) |
16 | 15 | adantr 466 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴) |
17 | 16 | oveq2d 6809 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Yrm 𝑁) · 𝐴)) |
18 | rmyneg 38019 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) | |
19 | 11, 18 | mpan2 671 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) |
20 | rmy1 38021 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | |
21 | 20 | negeqd 10477 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → -(𝐴 Yrm 1) = -1) |
22 | 19, 21 | eqtrd 2805 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -1) |
23 | 22 | adantr 466 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -1) = -1) |
24 | 23 | oveq2d 6809 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Xrm 𝑁) · -1)) |
25 | frmx 38004 | . . . . . . . 8 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
26 | 25 | fovcl 6912 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
27 | 26 | nn0cnd 11555 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ) |
28 | neg1cn 11326 | . . . . . 6 ⊢ -1 ∈ ℂ | |
29 | mulcom 10224 | . . . . . 6 ⊢ (((𝐴 Xrm 𝑁) ∈ ℂ ∧ -1 ∈ ℂ) → ((𝐴 Xrm 𝑁) · -1) = (-1 · (𝐴 Xrm 𝑁))) | |
30 | 27, 28, 29 | sylancl 574 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · -1) = (-1 · (𝐴 Xrm 𝑁))) |
31 | 27 | mulm1d 10684 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (-1 · (𝐴 Xrm 𝑁)) = -(𝐴 Xrm 𝑁)) |
32 | 24, 30, 31 | 3eqtrd 2809 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Xrm 𝑁)) |
33 | 17, 32 | oveq12d 6811 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴 Yrm 𝑁) · 𝐴) + -(𝐴 Xrm 𝑁))) |
34 | frmy 38005 | . . . . . . 7 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
35 | 34 | fovcl 6912 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
36 | 35 | zcnd 11685 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
37 | eluzelcn 11900 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
38 | 37 | adantr 466 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ) |
39 | 36, 38 | mulcld 10262 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 𝐴) ∈ ℂ) |
40 | 39, 27 | negsubd 10600 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · 𝐴) + -(𝐴 Xrm 𝑁)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
41 | 33, 40 | eqtrd 2805 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
42 | 7, 10, 41 | 3eqtrd 2809 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 1c1 10139 + caddc 10141 · cmul 10143 − cmin 10468 -cneg 10469 2c2 11272 ℕ0cn0 11494 ℤcz 11579 ℤ≥cuz 11888 Xrm crmx 37990 Yrm crmy 37991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-omul 7718 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-acn 8968 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-xnn0 11566 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-dvds 15190 df-gcd 15425 df-numer 15650 df-denom 15651 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 df-squarenn 37931 df-pell1qr 37932 df-pell14qr 37933 df-pell1234qr 37934 df-pellfund 37935 df-rmx 37992 df-rmy 37993 |
This theorem is referenced by: rmyluc 38028 jm2.24nn 38052 |
Copyright terms: Public domain | W3C validator |