Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmym1 | Structured version Visualization version GIF version |
Description: Subtraction of 1 formula for Y sequence. Part 2 of equation 2.10 of [JonesMatijasevic] p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014.) |
Ref | Expression |
---|---|
rmym1 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12079 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 485 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
3 | ax-1cn 10685 | . . . . 5 ⊢ 1 ∈ ℂ | |
4 | negsub 11024 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + -1) = (𝑁 − 1)) | |
5 | 2, 3, 4 | sylancl 589 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 + -1) = (𝑁 − 1)) |
6 | 5 | eqcomd 2745 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 − 1) = (𝑁 + -1)) |
7 | 6 | oveq2d 7198 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (𝐴 Yrm (𝑁 + -1))) |
8 | neg1z 12111 | . . 3 ⊢ -1 ∈ ℤ | |
9 | rmyadd 40365 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ -1 ∈ ℤ) → (𝐴 Yrm (𝑁 + -1)) = (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)))) | |
10 | 8, 9 | mp3an3 1451 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + -1)) = (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)))) |
11 | 1z 12105 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
12 | rmxneg 40358 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) | |
13 | 11, 12 | mpan2 691 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = (𝐴 Xrm 1)) |
14 | rmx1 40360 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm 1) = 𝐴) | |
15 | 13, 14 | eqtrd 2774 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Xrm -1) = 𝐴) |
16 | 15 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm -1) = 𝐴) |
17 | 16 | oveq2d 7198 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) = ((𝐴 Yrm 𝑁) · 𝐴)) |
18 | rmyneg 40362 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 1 ∈ ℤ) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) | |
19 | 11, 18 | mpan2 691 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -(𝐴 Yrm 1)) |
20 | rmy1 40364 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm 1) = 1) | |
21 | 20 | negeqd 10970 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → -(𝐴 Yrm 1) = -1) |
22 | 19, 21 | eqtrd 2774 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 Yrm -1) = -1) |
23 | 22 | adantr 484 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm -1) = -1) |
24 | 23 | oveq2d 7198 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)) = ((𝐴 Xrm 𝑁) · -1)) |
25 | frmx 40347 | . . . . . . . 8 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
26 | 25 | fovcl 7306 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
27 | 26 | nn0cnd 12050 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ) |
28 | neg1cn 11842 | . . . . . 6 ⊢ -1 ∈ ℂ | |
29 | mulcom 10713 | . . . . . 6 ⊢ (((𝐴 Xrm 𝑁) ∈ ℂ ∧ -1 ∈ ℂ) → ((𝐴 Xrm 𝑁) · -1) = (-1 · (𝐴 Xrm 𝑁))) | |
30 | 27, 28, 29 | sylancl 589 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · -1) = (-1 · (𝐴 Xrm 𝑁))) |
31 | 27 | mulm1d 11182 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (-1 · (𝐴 Xrm 𝑁)) = -(𝐴 Xrm 𝑁)) |
32 | 24, 30, 31 | 3eqtrd 2778 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1)) = -(𝐴 Xrm 𝑁)) |
33 | 17, 32 | oveq12d 7200 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴 Yrm 𝑁) · 𝐴) + -(𝐴 Xrm 𝑁))) |
34 | frmy 40348 | . . . . . . 7 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
35 | 34 | fovcl 7306 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
36 | 35 | zcnd 12181 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
37 | eluzelcn 12348 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
38 | 37 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℂ) |
39 | 36, 38 | mulcld 10751 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · 𝐴) ∈ ℂ) |
40 | 39, 27 | negsubd 11093 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · 𝐴) + -(𝐴 Xrm 𝑁)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
41 | 33, 40 | eqtrd 2774 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Xrm -1)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm -1))) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
42 | 7, 10, 41 | 3eqtrd 2778 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ‘cfv 6349 (class class class)co 7182 ℂcc 10625 1c1 10628 + caddc 10630 · cmul 10632 − cmin 10960 -cneg 10961 2c2 11783 ℕ0cn0 11988 ℤcz 12074 ℤ≥cuz 12336 Xrm crmx 40334 Yrm crmy 40335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-inf2 9189 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 ax-addf 10706 ax-mulf 10707 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-se 5494 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-isom 6358 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-of 7437 df-om 7612 df-1st 7726 df-2nd 7727 df-supp 7869 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-2o 8144 df-oadd 8147 df-omul 8148 df-er 8332 df-map 8451 df-pm 8452 df-ixp 8520 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-fsupp 8919 df-fi 8960 df-sup 8991 df-inf 8992 df-oi 9059 df-card 9453 df-acn 9456 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 df-nn 11729 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-7 11796 df-8 11797 df-9 11798 df-n0 11989 df-xnn0 12061 df-z 12075 df-dec 12192 df-uz 12337 df-q 12443 df-rp 12485 df-xneg 12602 df-xadd 12603 df-xmul 12604 df-ioo 12837 df-ioc 12838 df-ico 12839 df-icc 12840 df-fz 12994 df-fzo 13137 df-fl 13265 df-mod 13341 df-seq 13473 df-exp 13534 df-fac 13738 df-bc 13767 df-hash 13795 df-shft 14528 df-cj 14560 df-re 14561 df-im 14562 df-sqrt 14696 df-abs 14697 df-limsup 14930 df-clim 14947 df-rlim 14948 df-sum 15148 df-ef 15525 df-sin 15527 df-cos 15528 df-pi 15530 df-dvds 15712 df-gcd 15950 df-numer 16187 df-denom 16188 df-struct 16600 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-mulr 16694 df-starv 16695 df-sca 16696 df-vsca 16697 df-ip 16698 df-tset 16699 df-ple 16700 df-ds 16702 df-unif 16703 df-hom 16704 df-cco 16705 df-rest 16811 df-topn 16812 df-0g 16830 df-gsum 16831 df-topgen 16832 df-pt 16833 df-prds 16836 df-xrs 16890 df-qtop 16895 df-imas 16896 df-xps 16898 df-mre 16972 df-mrc 16973 df-acs 16975 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-submnd 18085 df-mulg 18355 df-cntz 18577 df-cmn 19038 df-psmet 20221 df-xmet 20222 df-met 20223 df-bl 20224 df-mopn 20225 df-fbas 20226 df-fg 20227 df-cnfld 20230 df-top 21657 df-topon 21674 df-topsp 21696 df-bases 21709 df-cld 21782 df-ntr 21783 df-cls 21784 df-nei 21861 df-lp 21899 df-perf 21900 df-cn 21990 df-cnp 21991 df-haus 22078 df-tx 22325 df-hmeo 22518 df-fil 22609 df-fm 22701 df-flim 22702 df-flf 22703 df-xms 23085 df-ms 23086 df-tms 23087 df-cncf 23642 df-limc 24630 df-dv 24631 df-log 25312 df-squarenn 40275 df-pell1qr 40276 df-pell14qr 40277 df-pell1234qr 40278 df-pellfund 40279 df-rmx 40336 df-rmy 40337 |
This theorem is referenced by: rmyluc 40371 jm2.24nn 40393 |
Copyright terms: Public domain | W3C validator |