Proof of Theorem jm2.17c
| Step | Hyp | Ref
| Expression |
| 1 | | 2re 12340 |
. . . . . 6
⊢ 2 ∈
ℝ |
| 2 | | eluzelre 12889 |
. . . . . . 7
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℝ) |
| 3 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 4 | | remulcl 11240 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ 𝐴
∈ ℝ) → (2 · 𝐴) ∈ ℝ) |
| 5 | 1, 3, 4 | sylancr 587 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈
ℝ) |
| 6 | | nnz 12634 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ) |
| 8 | 7 | peano2zd 12725 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℤ) |
| 9 | | frmy 42926 |
. . . . . . . 8
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
| 10 | 9 | fovcl 7561 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈
ℤ) |
| 11 | 10 | zred 12722 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈
ℝ) |
| 12 | 8, 11 | syldan 591 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℝ) |
| 13 | 5, 12 | remulcld 11291 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ∈ ℝ) |
| 14 | | nncn 12274 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 15 | 14 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
| 16 | | ax-1cn 11213 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 17 | | pncan 11514 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 18 | 15, 16, 17 | sylancl 586 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) = 𝑁) |
| 19 | 18 | oveq2d 7447 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) = (𝐴 Yrm 𝑁)) |
| 20 | 9 | fovcl 7561 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
| 21 | 20 | zred 12722 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℝ) |
| 22 | 6, 21 | sylan2 593 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℝ) |
| 23 | 19, 22 | eqeltrd 2841 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) ∈
ℝ) |
| 24 | 13, 23 | resubcld 11691 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) ∈
ℝ) |
| 25 | | nnnn0 12533 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 26 | 25 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
| 27 | 5, 26 | reexpcld 14203 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℝ) |
| 28 | 5, 27 | remulcld 11291 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)) ∈ ℝ) |
| 29 | | rmy0 42941 |
. . . . . . 7
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 Yrm 0) = 0) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0) |
| 31 | | nngt0 12297 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
| 32 | 31 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
| 33 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈
(ℤ≥‘2)) |
| 34 | | 0zd 12625 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 0 ∈
ℤ) |
| 35 | | ltrmy 42964 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))) |
| 36 | 33, 34, 7, 35 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))) |
| 37 | 32, 36 | mpbid 232 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)) |
| 38 | 30, 37 | eqbrtrrd 5167 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁)) |
| 39 | 38, 19 | breqtrrd 5171 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm ((𝑁 + 1) −
1))) |
| 40 | 23, 13 | ltsubposd 11849 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (0 < (𝐴 Yrm ((𝑁 + 1) − 1)) ↔ (((2
· 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2
· 𝐴) · (𝐴 Yrm (𝑁 + 1))))) |
| 41 | 39, 40 | mpbid 232 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1)))) |
| 42 | | jm2.17b 42973 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)) |
| 43 | 25, 42 | sylan2 593 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)) |
| 44 | | 2nn 12339 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
| 45 | | eluz2nn 12924 |
. . . . . . . 8
⊢ (𝐴 ∈
(ℤ≥‘2) → 𝐴 ∈ ℕ) |
| 46 | | nnmulcl 12290 |
. . . . . . . 8
⊢ ((2
∈ ℕ ∧ 𝐴
∈ ℕ) → (2 · 𝐴) ∈ ℕ) |
| 47 | 44, 45, 46 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈
(ℤ≥‘2) → (2 · 𝐴) ∈ ℕ) |
| 48 | 47 | nngt0d 12315 |
. . . . . 6
⊢ (𝐴 ∈
(ℤ≥‘2) → 0 < (2 · 𝐴)) |
| 49 | 48 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → 0 < (2 ·
𝐴)) |
| 50 | | lemul2 12120 |
. . . . 5
⊢ (((𝐴 Yrm (𝑁 + 1)) ∈ ℝ ∧ ((2
· 𝐴)↑𝑁) ∈ ℝ ∧ ((2
· 𝐴) ∈ ℝ
∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))) |
| 51 | 12, 27, 5, 49, 50 | syl112anc 1376 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))) |
| 52 | 43, 51 | mpbid 232 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))) |
| 53 | 24, 13, 28, 41, 52 | ltletrd 11421 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))) |
| 54 | | rmyluc2 42950 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 ·
𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) −
1)))) |
| 55 | 8, 54 | syldan 591 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1)))) |
| 56 | 5 | recnd 11289 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈
ℂ) |
| 57 | 56, 26 | expp1d 14187 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = (((2 · 𝐴)↑𝑁) · (2 · 𝐴))) |
| 58 | 27 | recnd 11289 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℂ) |
| 59 | 58, 56 | mulcomd 11282 |
. . 3
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴)↑𝑁) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))) |
| 60 | 57, 59 | eqtrd 2777 |
. 2
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))) |
| 61 | 53, 55, 60 | 3brtr4d 5175 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1))) |