Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17c Structured version   Visualization version   GIF version

Theorem jm2.17c 39566
Description: Second half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17c ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1)))

Proof of Theorem jm2.17c
StepHypRef Expression
1 2re 11714 . . . . . 6 2 ∈ ℝ
2 eluzelre 12257 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
32adantr 483 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
4 remulcl 10624 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
51, 3, 4sylancr 589 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℝ)
6 nnz 12007 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
76adantl 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
87peano2zd 12093 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℤ)
9 frmy 39518 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 7281 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℤ)
1110zred 12090 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℝ)
128, 11syldan 593 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℝ)
135, 12remulcld 10673 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ∈ ℝ)
14 nncn 11648 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1514adantl 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
16 ax-1cn 10597 . . . . . . 7 1 ∈ ℂ
17 pncan 10894 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
1815, 16, 17sylancl 588 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 7174 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) = (𝐴 Yrm 𝑁))
209fovcl 7281 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2120zred 12090 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℝ)
226, 21sylan2 594 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℝ)
2319, 22eqeltrd 2915 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) ∈ ℝ)
2413, 23resubcld 11070 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) ∈ ℝ)
25 nnnn0 11907 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2625adantl 484 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
275, 26reexpcld 13530 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℝ)
285, 27remulcld 10673 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)) ∈ ℝ)
29 rmy0 39533 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
3029adantr 483 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
31 nngt0 11671 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
3231adantl 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
33 simpl 485 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
34 0zd 11996 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
35 ltrmy 39556 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
3633, 34, 7, 35syl3anc 1367 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
3732, 36mpbid 234 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
3830, 37eqbrtrrd 5092 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
3938, 19breqtrrd 5096 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm ((𝑁 + 1) − 1)))
4023, 13ltsubposd 11228 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < (𝐴 Yrm ((𝑁 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1)))))
4139, 40mpbid 234 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))))
42 jm2.17b 39565 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
4325, 42sylan2 594 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
44 2nn 11713 . . . . . . . 8 2 ∈ ℕ
45 eluz2nn 12287 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
46 nnmulcl 11664 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
4744, 45, 46sylancr 589 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
4847nngt0d 11689 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
4948adantr 483 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (2 · 𝐴))
50 lemul2 11495 . . . . 5 (((𝐴 Yrm (𝑁 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑁) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))))
5112, 27, 5, 49, 50syl112anc 1370 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))))
5243, 51mpbid 234 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
5324, 13, 28, 41, 52ltletrd 10802 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
54 rmyluc2 39542 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))))
558, 54syldan 593 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))))
565recnd 10671 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
5756, 26expp1d 13514 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = (((2 · 𝐴)↑𝑁) · (2 · 𝐴)))
5827recnd 10671 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℂ)
5958, 56mulcomd 10664 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴)↑𝑁) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
6057, 59eqtrd 2858 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
6153, 55, 603brtr4d 5100 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  cexp 13432   Yrm crmy 39505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-numer 16077  df-denom 16078  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-squarenn 39445  df-pell1qr 39446  df-pell14qr 39447  df-pell1234qr 39448  df-pellfund 39449  df-rmx 39506  df-rmy 39507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator