Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17c Structured version   Visualization version   GIF version

Theorem jm2.17c 42950
Description: Second half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17c ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1)))

Proof of Theorem jm2.17c
StepHypRef Expression
1 2re 12337 . . . . . 6 2 ∈ ℝ
2 eluzelre 12886 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
32adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
4 remulcl 11237 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
51, 3, 4sylancr 587 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℝ)
6 nnz 12631 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
76adantl 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
87peano2zd 12722 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝑁 + 1) ∈ ℤ)
9 frmy 42902 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 7560 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℤ)
1110zred 12719 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℝ)
128, 11syldan 591 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ∈ ℝ)
135, 12remulcld 11288 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ∈ ℝ)
14 nncn 12271 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1514adantl 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
16 ax-1cn 11210 . . . . . . 7 1 ∈ ℂ
17 pncan 11511 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
1815, 16, 17sylancl 586 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 7446 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) = (𝐴 Yrm 𝑁))
209fovcl 7560 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
2120zred 12719 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℝ)
226, 21sylan2 593 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℝ)
2319, 22eqeltrd 2838 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) − 1)) ∈ ℝ)
2413, 23resubcld 11688 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) ∈ ℝ)
25 nnnn0 12530 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2625adantl 481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
275, 26reexpcld 14199 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℝ)
285, 27remulcld 11288 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)) ∈ ℝ)
29 rmy0 42917 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
3029adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
31 nngt0 12294 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
3231adantl 481 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
33 simpl 482 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
34 0zd 12622 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
35 ltrmy 42940 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
3633, 34, 7, 35syl3anc 1370 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
3732, 36mpbid 232 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
3830, 37eqbrtrrd 5171 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
3938, 19breqtrrd 5175 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm ((𝑁 + 1) − 1)))
4023, 13ltsubposd 11846 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < (𝐴 Yrm ((𝑁 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1)))))
4139, 40mpbid 232 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))))
42 jm2.17b 42949 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
4325, 42sylan2 593 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
44 2nn 12336 . . . . . . . 8 2 ∈ ℕ
45 eluz2nn 12921 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
46 nnmulcl 12287 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
4744, 45, 46sylancr 587 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
4847nngt0d 12312 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
4948adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (2 · 𝐴))
50 lemul2 12117 . . . . 5 (((𝐴 Yrm (𝑁 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑁) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))))
5112, 27, 5, 49, 50syl112anc 1373 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁))))
5243, 51mpbid 232 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
5324, 13, 28, 41, 52ltletrd 11418 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))) < ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
54 rmyluc2 42926 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))))
558, 54syldan 591 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑁 + 1))) − (𝐴 Yrm ((𝑁 + 1) − 1))))
565recnd 11286 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
5756, 26expp1d 14183 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = (((2 · 𝐴)↑𝑁) · (2 · 𝐴)))
5827recnd 11286 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑𝑁) ∈ ℂ)
5958, 56mulcomd 11279 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((2 · 𝐴)↑𝑁) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
6057, 59eqtrd 2774 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · 𝐴)↑(𝑁 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑁)))
6153, 55, 603brtr4d 5179 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 + 1) + 1)) < ((2 · 𝐴)↑(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  cexp 14098   Yrm crmy 42888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-numer 16768  df-denom 16769  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-squarenn 42828  df-pell1qr 42829  df-pell14qr 42830  df-pell1234qr 42831  df-pellfund 42832  df-rmx 42889  df-rmy 42890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator