Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrmynn0 Structured version   Visualization version   GIF version

Theorem ltrmynn0 38474
Description: The Y-sequence is strictly monotonic on 0. Strengthened by ltrmy 38478. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
ltrmynn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁)))

Proof of Theorem ltrmynn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 11752 . . . . . . 7 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
2 frmy 38438 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
32fovcl 7042 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
41, 3sylan2 586 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℤ)
54zred 11834 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℝ)
6 eluzelre 12003 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
76adantr 474 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ)
85, 7remulcld 10407 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Yrm 𝑏) · 𝐴) ∈ ℝ)
9 frmx 38437 . . . . . . . . 9 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
109fovcl 7042 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
111, 10sylan2 586 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℕ0)
1211nn0red 11703 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℝ)
138, 12readdcld 10406 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)) ∈ ℝ)
14 rmxypos 38473 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
1514simprd 491 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
16 eluz2nn 12032 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
1716nnge1d 11423 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 ≤ 𝐴)
1817adantr 474 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 1 ≤ 𝐴)
195, 7, 15, 18lemulge11d 11315 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ≤ ((𝐴 Yrm 𝑏) · 𝐴))
2014simpld 490 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 < (𝐴 Xrm 𝑏))
2112, 8ltaddposd 10959 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ↔ ((𝐴 Yrm 𝑏) · 𝐴) < (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏))))
2220, 21mpbid 224 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Yrm 𝑏) · 𝐴) < (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
235, 8, 13, 19, 22lelttrd 10534 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) < (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
24 rmyp1 38457 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
251, 24sylan2 586 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm (𝑏 + 1)) = (((𝐴 Yrm 𝑏) · 𝐴) + (𝐴 Xrm 𝑏)))
2623, 25breqtrrd 4914 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) < (𝐴 Yrm (𝑏 + 1)))
27 nn0z 11752 . . . . 5 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
282fovcl 7042 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑎) ∈ ℤ)
2927, 28sylan2 586 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Yrm 𝑎) ∈ ℤ)
3029zred 11834 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Yrm 𝑎) ∈ ℝ)
31 nn0uz 12028 . . 3 0 = (ℤ‘0)
32 oveq2 6930 . . 3 (𝑎 = (𝑏 + 1) → (𝐴 Yrm 𝑎) = (𝐴 Yrm (𝑏 + 1)))
33 oveq2 6930 . . 3 (𝑎 = 𝑏 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑏))
34 oveq2 6930 . . 3 (𝑎 = 𝑀 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑀))
35 oveq2 6930 . . 3 (𝑎 = 𝑁 → (𝐴 Yrm 𝑎) = (𝐴 Yrm 𝑁))
3626, 30, 31, 32, 33, 34, 35monotuz 38465 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁)))
37363impb 1104 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Yrm 𝑀) < (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4886  cfv 6135  (class class class)co 6922  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  2c2 11430  0cn0 11642  cz 11728  cuz 11992   Xrm crmx 38424   Yrm crmy 38425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-xnn0 11715  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-dvds 15388  df-gcd 15623  df-numer 15847  df-denom 15848  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-squarenn 38365  df-pell1qr 38366  df-pell14qr 38367  df-pell1234qr 38368  df-pellfund 38369  df-rmx 38426  df-rmy 38427
This theorem is referenced by:  ltrmy  38478  jm2.19  38519
  Copyright terms: Public domain W3C validator