![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.19lem2 | Structured version Visualization version GIF version |
Description: Lemma for jm2.19 42943. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
Ref | Expression |
---|---|
jm2.19lem2 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + 𝑀)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frmy 42864 | . . . . . 6 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
2 | 1 | fovcl 7556 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
3 | 2 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
4 | 1 | fovcl 7556 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
5 | 4 | 3adant2 1129 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
6 | frmx 42863 | . . . . . . 7 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
7 | 6 | fovcl 7556 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℕ0) |
8 | 7 | 3adant3 1130 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℕ0) |
9 | 8 | nn0zd 12631 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℤ) |
10 | 3, 9 | gcdcomd 16538 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) gcd (𝐴 Xrm 𝑀)) = ((𝐴 Xrm 𝑀) gcd (𝐴 Yrm 𝑀))) |
11 | jm2.19lem1 42939 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → ((𝐴 Xrm 𝑀) gcd (𝐴 Yrm 𝑀)) = 1) | |
12 | 11 | 3adant3 1130 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) gcd (𝐴 Yrm 𝑀)) = 1) |
13 | 10, 12 | eqtrd 2773 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) gcd (𝐴 Xrm 𝑀)) = 1) |
14 | coprmdvdsb 42935 | . . . 4 ⊢ (((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm 𝑁) ∈ ℤ ∧ ((𝐴 Xrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm 𝑀) gcd (𝐴 Xrm 𝑀)) = 1)) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))) | |
15 | 3, 5, 9, 13, 14 | syl112anc 1372 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)))) |
16 | 8 | nn0cnd 12581 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑀) ∈ ℂ) |
17 | 5 | zcnd 12715 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℂ) |
18 | 16, 17 | mulcomd 11274 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) = ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀))) |
19 | 18 | breq2d 5162 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ ((𝐴 Xrm 𝑀) · (𝐴 Yrm 𝑁)) ↔ (𝐴 Yrm 𝑀) ∥ ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)))) |
20 | 15, 19 | bitrd 279 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)))) |
21 | 5, 9 | zmulcld 12720 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) ∈ ℤ) |
22 | 6 | fovcl 7556 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
23 | 22 | 3adant2 1129 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
24 | 23 | nn0zd 12631 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ) |
25 | 24, 3 | zmulcld 12720 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℤ) |
26 | dvdsmul2 16303 | . . . 4 ⊢ (((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) | |
27 | 24, 3, 26 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) |
28 | dvdsadd2b 16330 | . . 3 ⊢ (((𝐴 Yrm 𝑀) ∈ ℤ ∧ ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) ∈ ℤ ∧ (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∥ ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) → ((𝐴 Yrm 𝑀) ∥ ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) ↔ (𝐴 Yrm 𝑀) ∥ (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀))))) | |
29 | 3, 21, 25, 27, 28 | syl112anc 1372 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) ↔ (𝐴 Yrm 𝑀) ∥ (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀))))) |
30 | rmyadd 42881 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm (𝑁 + 𝑀)) = (((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) | |
31 | 30 | 3com23 1124 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 + 𝑀)) = (((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)))) |
32 | 17, 16 | mulcld 11273 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) ∈ ℂ) |
33 | 23 | nn0cnd 12581 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℂ) |
34 | 3 | zcnd 12715 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℂ) |
35 | 33, 34 | mulcld 11273 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) ∈ ℂ) |
36 | 32, 35 | addcomd 11455 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)) + ((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀))) = (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀)))) |
37 | 31, 36 | eqtr2d 2774 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀))) = (𝐴 Yrm (𝑁 + 𝑀))) |
38 | 37 | breq2d 5162 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (((𝐴 Xrm 𝑁) · (𝐴 Yrm 𝑀)) + ((𝐴 Yrm 𝑁) · (𝐴 Xrm 𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + 𝑀)))) |
39 | 20, 29, 38 | 3bitrd 305 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + 𝑀)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1085 = wceq 1535 ∈ wcel 2104 class class class wbr 5150 ‘cfv 6559 (class class class)co 7426 1c1 11148 + caddc 11150 · cmul 11152 2c2 12313 ℕ0cn0 12518 ℤcz 12605 ℤ≥cuz 12870 ∥ cdvds 16277 gcd cgcd 16518 Xrm crmx 42849 Yrm crmy 42850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7748 ax-inf2 9673 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-pre-sup 11225 ax-addf 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6318 df-ord 6384 df-on 6385 df-lim 6386 df-suc 6387 df-iota 6511 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7882 df-1st 8008 df-2nd 8009 df-supp 8180 df-frecs 8300 df-wrecs 8331 df-recs 8405 df-rdg 8444 df-1o 8500 df-2o 8501 df-oadd 8504 df-omul 8505 df-er 8739 df-map 8862 df-pm 8863 df-ixp 8932 df-en 8980 df-dom 8981 df-sdom 8982 df-fin 8983 df-fsupp 9395 df-fi 9443 df-sup 9474 df-inf 9475 df-oi 9542 df-card 9971 df-acn 9974 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11486 df-neg 11487 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-xnn0 12592 df-z 12606 df-dec 12726 df-uz 12871 df-q 12983 df-rp 13027 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ioc 13383 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13683 df-fl 13819 df-mod 13897 df-seq 14030 df-exp 14090 df-fac 14300 df-bc 14329 df-hash 14357 df-shft 15093 df-cj 15125 df-re 15126 df-im 15127 df-sqrt 15261 df-abs 15262 df-limsup 15494 df-clim 15511 df-rlim 15512 df-sum 15710 df-ef 16090 df-sin 16092 df-cos 16093 df-pi 16095 df-dvds 16278 df-gcd 16519 df-numer 16759 df-denom 16760 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17236 df-ress 17265 df-plusg 17301 df-mulr 17302 df-starv 17303 df-sca 17304 df-vsca 17305 df-ip 17306 df-tset 17307 df-ple 17308 df-ds 17310 df-unif 17311 df-hom 17312 df-cco 17313 df-rest 17459 df-topn 17460 df-0g 17478 df-gsum 17479 df-topgen 17480 df-pt 17481 df-prds 17484 df-xrs 17539 df-qtop 17544 df-imas 17545 df-xps 17547 df-mre 17621 df-mrc 17622 df-acs 17624 df-mgm 18655 df-sgrp 18734 df-mnd 18750 df-submnd 18796 df-mulg 19085 df-cntz 19334 df-cmn 19801 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22898 df-topon 22915 df-topsp 22937 df-bases 22951 df-cld 23025 df-ntr 23026 df-cls 23027 df-nei 23104 df-lp 23142 df-perf 23143 df-cn 23233 df-cnp 23234 df-haus 23321 df-tx 23568 df-hmeo 23761 df-fil 23852 df-fm 23944 df-flim 23945 df-flf 23946 df-xms 24328 df-ms 24329 df-tms 24330 df-cncf 24900 df-limc 25898 df-dv 25899 df-log 26595 df-squarenn 42790 df-pell1qr 42791 df-pell14qr 42792 df-pell1234qr 42793 df-pellfund 42794 df-rmx 42851 df-rmy 42852 |
This theorem is referenced by: jm2.19lem3 42941 |
Copyright terms: Public domain | W3C validator |