Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.24nn Structured version   Visualization version   GIF version

Theorem jm2.24nn 42991
Description: X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to . (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.24nn ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))

Proof of Theorem jm2.24nn
StepHypRef Expression
1 nnz 12486 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 1z 12499 . . . . . 6 1 ∈ ℤ
3 zsubcl 12511 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 − 1) ∈ ℤ)
41, 2, 3sylancl 586 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
5 frmy 42946 . . . . . 6 Yrm :((ℤ‘2) × ℤ)⟶ℤ
65fovcl 7474 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
74, 6sylan2 593 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
87zred 12574 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℝ)
95fovcl 7474 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
101, 9sylan2 593 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
1110zred 12574 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℝ)
128, 11readdcld 11138 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ)
13 2re 12196 . . . 4 2 ∈ ℝ
14 remulcl 11088 . . . 4 ((2 ∈ ℝ ∧ (𝐴 Yrm 𝑁) ∈ ℝ) → (2 · (𝐴 Yrm 𝑁)) ∈ ℝ)
1513, 11, 14sylancr 587 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) ∈ ℝ)
1615, 8resubcld 11542 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
17 frmx 42945 . . . . 5 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1817fovcl 7474 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
191, 18sylan2 593 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2019nn0red 12440 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℝ)
2111, 8resubcld 11542 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
22 remulcl 11088 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝐴 Yrm (𝑁 − 1)) ∈ ℝ) → (2 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
2313, 8, 22sylancr 587 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
24 eluzelre 12740 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2524adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
2625, 8remulcld 11139 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
278, 25remulcld 11139 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) · 𝐴) ∈ ℝ)
2817fovcl 7474 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℕ0)
294, 28sylan2 593 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℕ0)
3029nn0red 12440 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℝ)
3127, 30readdcld 11138 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))) ∈ ℝ)
3213a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ)
33 nnm1nn0 12419 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
34 rmxypos 42979 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → (0 < (𝐴 Xrm (𝑁 − 1)) ∧ 0 ≤ (𝐴 Yrm (𝑁 − 1))))
3534simprd 495 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → 0 ≤ (𝐴 Yrm (𝑁 − 1)))
3633, 35sylan2 593 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐴 Yrm (𝑁 − 1)))
37 eluzle 12742 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
3837adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 2 ≤ 𝐴)
3932, 25, 8, 36, 38lemul1ad 12058 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) ≤ (𝐴 · (𝐴 Yrm (𝑁 − 1))))
4025recnd 11137 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
418recnd 11137 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℂ)
4240, 41mulcomd 11130 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) = ((𝐴 Yrm (𝑁 − 1)) · 𝐴))
4334simpld 494 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → 0 < (𝐴 Xrm (𝑁 − 1)))
4433, 43sylan2 593 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Xrm (𝑁 − 1)))
4530, 27ltaddposd 11698 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < (𝐴 Xrm (𝑁 − 1)) ↔ ((𝐴 Yrm (𝑁 − 1)) · 𝐴) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1)))))
4644, 45mpbid 232 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) · 𝐴) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
4742, 46eqbrtrd 5113 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
4823, 26, 31, 39, 47lelttrd 11268 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
49412timesd 12361 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) = ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))))
50 rmyp1 42965 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
514, 50sylan2 593 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
52 nnre 12129 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5352adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5453recnd 11137 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
55 ax-1cn 11061 . . . . . . . . 9 1 ∈ ℂ
56 npcan 11366 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5754, 55, 56sylancl 586 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
5857oveq2d 7362 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (𝐴 Yrm 𝑁))
5951, 58eqtr3d 2768 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))) = (𝐴 Yrm 𝑁))
6048, 49, 593brtr3d 5122 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))) < (𝐴 Yrm 𝑁))
618, 8, 11ltaddsubd 11714 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))) < (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm (𝑁 − 1)) < ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1)))))
6260, 61mpbid 232 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) < ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))))
638, 21, 11, 62ltadd1dd 11725 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6411recnd 11137 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
65642timesd 12361 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) = ((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)))
6665oveq1d 7361 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
6764, 64, 41addsubd 11490 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6866, 67eqtrd 2766 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6963, 68breqtrrd 5119 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
7025, 11remulcld 11139 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm 𝑁)) ∈ ℝ)
71 rmy0 42961 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
7271adantr 480 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
73 nngt0 12153 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
7473adantl 481 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
75 simpl 482 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
76 0zd 12477 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
771adantl 481 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
78 ltrmy 42984 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
7975, 76, 77, 78syl3anc 1373 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
8074, 79mpbid 232 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
8172, 80eqbrtrrd 5115 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
82 lemul1 11970 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((𝐴 Yrm 𝑁) ∈ ℝ ∧ 0 < (𝐴 Yrm 𝑁))) → (2 ≤ 𝐴 ↔ (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁))))
8332, 25, 11, 81, 82syl112anc 1376 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 ≤ 𝐴 ↔ (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁))))
8438, 83mpbid 232 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁)))
8515, 70, 8, 84lesub1dd 11730 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ≤ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
86 rmym1 42967 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)))
871, 86sylan2 593 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)))
8864, 40mulcomd 11130 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Yrm 𝑁)))
8988oveq1d 7361 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)) = ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)))
9087, 89eqtr2d 2767 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)))
9170recnd 11137 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm 𝑁)) ∈ ℂ)
9220recnd 11137 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
93 subsub23 11362 . . . . 5 (((𝐴 · (𝐴 Yrm 𝑁)) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Yrm (𝑁 − 1)) ∈ ℂ) → (((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)) ↔ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁)))
9491, 92, 41, 93syl3anc 1373 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)) ↔ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁)))
9590, 94mpbid 232 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁))
9685, 95breqtrd 5117 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ≤ (𝐴 Xrm 𝑁))
9712, 16, 20, 69, 96ltletrd 11270 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341  cn 12122  2c2 12177  0cn0 12378  cz 12465  cuz 12729   Xrm crmx 42932   Yrm crmy 42933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-acn 9832  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-dvds 16161  df-gcd 16403  df-numer 16643  df-denom 16644  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-squarenn 42873  df-pell1qr 42874  df-pell14qr 42875  df-pell1234qr 42876  df-pellfund 42877  df-rmx 42934  df-rmy 42935
This theorem is referenced by:  jm2.24  42995
  Copyright terms: Public domain W3C validator