Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.24nn Structured version   Visualization version   GIF version

Theorem jm2.24nn 40425
Description: X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to . (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.24nn ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))

Proof of Theorem jm2.24nn
StepHypRef Expression
1 nnz 12164 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 1z 12172 . . . . . 6 1 ∈ ℤ
3 zsubcl 12184 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 − 1) ∈ ℤ)
41, 2, 3sylancl 589 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
5 frmy 40380 . . . . . 6 Yrm :((ℤ‘2) × ℤ)⟶ℤ
65fovcl 7316 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
74, 6sylan2 596 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
87zred 12247 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℝ)
95fovcl 7316 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
101, 9sylan2 596 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
1110zred 12247 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℝ)
128, 11readdcld 10827 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ)
13 2re 11869 . . . 4 2 ∈ ℝ
14 remulcl 10779 . . . 4 ((2 ∈ ℝ ∧ (𝐴 Yrm 𝑁) ∈ ℝ) → (2 · (𝐴 Yrm 𝑁)) ∈ ℝ)
1513, 11, 14sylancr 590 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) ∈ ℝ)
1615, 8resubcld 11225 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
17 frmx 40379 . . . . 5 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1817fovcl 7316 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
191, 18sylan2 596 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2019nn0red 12116 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℝ)
2111, 8resubcld 11225 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
22 remulcl 10779 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝐴 Yrm (𝑁 − 1)) ∈ ℝ) → (2 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
2313, 8, 22sylancr 590 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
24 eluzelre 12414 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2524adantr 484 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
2625, 8remulcld 10828 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
278, 25remulcld 10828 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) · 𝐴) ∈ ℝ)
2817fovcl 7316 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℕ0)
294, 28sylan2 596 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℕ0)
3029nn0red 12116 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℝ)
3127, 30readdcld 10827 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))) ∈ ℝ)
3213a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ)
33 nnm1nn0 12096 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
34 rmxypos 40413 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → (0 < (𝐴 Xrm (𝑁 − 1)) ∧ 0 ≤ (𝐴 Yrm (𝑁 − 1))))
3534simprd 499 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → 0 ≤ (𝐴 Yrm (𝑁 − 1)))
3633, 35sylan2 596 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐴 Yrm (𝑁 − 1)))
37 eluzle 12416 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
3837adantr 484 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 2 ≤ 𝐴)
3932, 25, 8, 36, 38lemul1ad 11736 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) ≤ (𝐴 · (𝐴 Yrm (𝑁 − 1))))
4025recnd 10826 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
418recnd 10826 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℂ)
4240, 41mulcomd 10819 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) = ((𝐴 Yrm (𝑁 − 1)) · 𝐴))
4334simpld 498 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → 0 < (𝐴 Xrm (𝑁 − 1)))
4433, 43sylan2 596 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Xrm (𝑁 − 1)))
4530, 27ltaddposd 11381 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < (𝐴 Xrm (𝑁 − 1)) ↔ ((𝐴 Yrm (𝑁 − 1)) · 𝐴) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1)))))
4644, 45mpbid 235 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) · 𝐴) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
4742, 46eqbrtrd 5061 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
4823, 26, 31, 39, 47lelttrd 10955 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
49412timesd 12038 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) = ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))))
50 rmyp1 40399 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
514, 50sylan2 596 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
52 nnre 11802 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5352adantl 485 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5453recnd 10826 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
55 ax-1cn 10752 . . . . . . . . 9 1 ∈ ℂ
56 npcan 11052 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5754, 55, 56sylancl 589 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
5857oveq2d 7207 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (𝐴 Yrm 𝑁))
5951, 58eqtr3d 2773 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))) = (𝐴 Yrm 𝑁))
6048, 49, 593brtr3d 5070 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))) < (𝐴 Yrm 𝑁))
618, 8, 11ltaddsubd 11397 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))) < (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm (𝑁 − 1)) < ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1)))))
6260, 61mpbid 235 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) < ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))))
638, 21, 11, 62ltadd1dd 11408 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6411recnd 10826 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
65642timesd 12038 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) = ((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)))
6665oveq1d 7206 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
6764, 64, 41addsubd 11175 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6866, 67eqtrd 2771 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6963, 68breqtrrd 5067 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
7025, 11remulcld 10828 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm 𝑁)) ∈ ℝ)
71 rmy0 40395 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
7271adantr 484 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
73 nngt0 11826 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
7473adantl 485 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
75 simpl 486 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
76 0zd 12153 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
771adantl 485 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
78 ltrmy 40418 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
7975, 76, 77, 78syl3anc 1373 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
8074, 79mpbid 235 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
8172, 80eqbrtrrd 5063 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
82 lemul1 11649 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((𝐴 Yrm 𝑁) ∈ ℝ ∧ 0 < (𝐴 Yrm 𝑁))) → (2 ≤ 𝐴 ↔ (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁))))
8332, 25, 11, 81, 82syl112anc 1376 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 ≤ 𝐴 ↔ (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁))))
8438, 83mpbid 235 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁)))
8515, 70, 8, 84lesub1dd 11413 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ≤ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
86 rmym1 40401 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)))
871, 86sylan2 596 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)))
8864, 40mulcomd 10819 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Yrm 𝑁)))
8988oveq1d 7206 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)) = ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)))
9087, 89eqtr2d 2772 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)))
9170recnd 10826 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm 𝑁)) ∈ ℂ)
9220recnd 10826 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
93 subsub23 11048 . . . . 5 (((𝐴 · (𝐴 Yrm 𝑁)) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Yrm (𝑁 − 1)) ∈ ℂ) → (((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)) ↔ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁)))
9491, 92, 41, 93syl3anc 1373 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)) ↔ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁)))
9590, 94mpbid 235 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁))
9685, 95breqtrd 5065 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ≤ (𝐴 Xrm 𝑁))
9712, 16, 20, 69, 96ltletrd 10957 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112   class class class wbr 5039  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027  cn 11795  2c2 11850  0cn0 12055  cz 12141  cuz 12403   Xrm crmx 40366   Yrm crmy 40367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-omul 8185  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-acn 9523  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-sin 15594  df-cos 15595  df-pi 15597  df-dvds 15779  df-gcd 16017  df-numer 16254  df-denom 16255  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718  df-log 25399  df-squarenn 40307  df-pell1qr 40308  df-pell14qr 40309  df-pell1234qr 40310  df-pellfund 40311  df-rmx 40368  df-rmy 40369
This theorem is referenced by:  jm2.24  40429
  Copyright terms: Public domain W3C validator