![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrmxnn0 | Structured version Visualization version GIF version |
Description: The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
ltrmxnn0 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 11818 | . . . . . 6 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
2 | frmx 38903 | . . . . . . 7 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
3 | 2 | fovcl 7095 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0) |
4 | 1, 3 | sylan2 583 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℕ0) |
5 | 4 | nn0red 11768 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℝ) |
6 | eluzelre 12069 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
7 | 6 | adantr 473 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ) |
8 | 5, 7 | remulcld 10470 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ) |
9 | 1 | peano2zd 11903 | . . . . . 6 ⊢ (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℤ) |
10 | 2 | fovcl 7095 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0) |
11 | 9, 10 | sylan2 583 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0) |
12 | 11 | nn0red 11768 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℝ) |
13 | eluz2b2 12135 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
14 | 13 | simprbi 489 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
15 | 14 | adantr 473 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 1 < 𝐴) |
16 | rmxypos 38937 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) | |
17 | 16 | simpld 487 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 < (𝐴 Xrm 𝑏)) |
18 | ltmulgt11 11301 | . . . . . 6 ⊢ (((𝐴 Xrm 𝑏) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < (𝐴 Xrm 𝑏)) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))) | |
19 | 5, 7, 17, 18 | syl3anc 1351 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))) |
20 | 15, 19 | mpbid 224 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴)) |
21 | rmspecnonsq 38897 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | |
22 | 21 | eldifad 3842 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
23 | 22 | adantr 473 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ) |
24 | 23 | nnred 11456 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℝ) |
25 | frmy 38904 | . . . . . . . . . 10 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
26 | 25 | fovcl 7095 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ) |
27 | 1, 26 | sylan2 583 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℤ) |
28 | 27 | zred 11900 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℝ) |
29 | 23 | nnnn0d 11767 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ0) |
30 | 29 | nn0ge0d 11770 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ ((𝐴↑2) − 1)) |
31 | 16 | simprd 488 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏)) |
32 | 24, 28, 30, 31 | mulge0d 11018 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))) |
33 | 24, 28 | remulcld 10470 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ) |
34 | 8, 33 | addge01d 11029 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ↔ ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))) |
35 | 32, 34 | mpbid 224 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) |
36 | rmxp1 38922 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) | |
37 | 1, 36 | sylan2 583 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) |
38 | 35, 37 | breqtrrd 4957 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (𝐴 Xrm (𝑏 + 1))) |
39 | 5, 8, 12, 20, 38 | ltletrd 10600 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < (𝐴 Xrm (𝑏 + 1))) |
40 | nn0z 11818 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℤ) | |
41 | 2 | fovcl 7095 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑎) ∈ ℕ0) |
42 | 40, 41 | sylan2 583 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℕ0) |
43 | 42 | nn0red 11768 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℝ) |
44 | nn0uz 12094 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
45 | oveq2 6984 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1))) | |
46 | oveq2 6984 | . . 3 ⊢ (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏)) | |
47 | oveq2 6984 | . . 3 ⊢ (𝑎 = 𝑀 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑀)) | |
48 | oveq2 6984 | . . 3 ⊢ (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁)) | |
49 | 39, 43, 44, 45, 46, 47, 48 | monotuz 38931 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
50 | 49 | 3impb 1095 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 ℝcr 10334 0cc0 10335 1c1 10336 + caddc 10338 · cmul 10340 < clt 10474 ≤ cle 10475 − cmin 10670 ℕcn 11439 2c2 11495 ℕ0cn0 11707 ℤcz 11793 ℤ≥cuz 12058 ↑cexp 13244 ◻NNcsquarenn 38826 Xrm crmx 38890 Yrm crmy 38891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-omul 7910 df-er 8089 df-map 8208 df-pm 8209 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-acn 9165 df-cda 9388 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-xnn0 11780 df-z 11794 df-dec 11912 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ioo 12558 df-ioc 12559 df-ico 12560 df-icc 12561 df-fz 12709 df-fzo 12850 df-fl 12977 df-mod 13053 df-seq 13185 df-exp 13245 df-fac 13449 df-bc 13478 df-hash 13506 df-shft 14287 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-limsup 14689 df-clim 14706 df-rlim 14707 df-sum 14904 df-ef 15281 df-sin 15283 df-cos 15284 df-pi 15286 df-dvds 15468 df-gcd 15704 df-numer 15931 df-denom 15932 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-starv 16436 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-unif 16444 df-hom 16445 df-cco 16446 df-rest 16552 df-topn 16553 df-0g 16571 df-gsum 16572 df-topgen 16573 df-pt 16574 df-prds 16577 df-xrs 16631 df-qtop 16636 df-imas 16637 df-xps 16639 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-fbas 20244 df-fg 20245 df-cnfld 20248 df-top 21206 df-topon 21223 df-topsp 21245 df-bases 21258 df-cld 21331 df-ntr 21332 df-cls 21333 df-nei 21410 df-lp 21448 df-perf 21449 df-cn 21539 df-cnp 21540 df-haus 21627 df-tx 21874 df-hmeo 22067 df-fil 22158 df-fm 22250 df-flim 22251 df-flf 22252 df-xms 22633 df-ms 22634 df-tms 22635 df-cncf 23189 df-limc 24167 df-dv 24168 df-log 24841 df-squarenn 38831 df-pell1qr 38832 df-pell14qr 38833 df-pell1234qr 38834 df-pellfund 38835 df-rmx 38892 df-rmy 38893 |
This theorem is referenced by: lermxnn0 38940 |
Copyright terms: Public domain | W3C validator |