Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrmxnn0 | Structured version Visualization version GIF version |
Description: The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
ltrmxnn0 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12273 | . . . . . 6 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
2 | frmx 40651 | . . . . . . 7 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
3 | 2 | fovcl 7380 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0) |
4 | 1, 3 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℕ0) |
5 | 4 | nn0red 12224 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℝ) |
6 | eluzelre 12522 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ) |
8 | 5, 7 | remulcld 10936 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ) |
9 | 1 | peano2zd 12358 | . . . . . 6 ⊢ (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℤ) |
10 | 2 | fovcl 7380 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0) |
11 | 9, 10 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0) |
12 | 11 | nn0red 12224 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℝ) |
13 | eluz2b2 12590 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
14 | 13 | simprbi 496 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 1 < 𝐴) |
16 | rmxypos 40685 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) | |
17 | 16 | simpld 494 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 < (𝐴 Xrm 𝑏)) |
18 | ltmulgt11 11765 | . . . . . 6 ⊢ (((𝐴 Xrm 𝑏) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < (𝐴 Xrm 𝑏)) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))) | |
19 | 5, 7, 17, 18 | syl3anc 1369 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))) |
20 | 15, 19 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴)) |
21 | rmspecnonsq 40645 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | |
22 | 21 | eldifad 3895 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
23 | 22 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ) |
24 | 23 | nnred 11918 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℝ) |
25 | frmy 40652 | . . . . . . . . . 10 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
26 | 25 | fovcl 7380 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ) |
27 | 1, 26 | sylan2 592 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℤ) |
28 | 27 | zred 12355 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℝ) |
29 | 23 | nnnn0d 12223 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ0) |
30 | 29 | nn0ge0d 12226 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ ((𝐴↑2) − 1)) |
31 | 16 | simprd 495 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏)) |
32 | 24, 28, 30, 31 | mulge0d 11482 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))) |
33 | 24, 28 | remulcld 10936 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ) |
34 | 8, 33 | addge01d 11493 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ↔ ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))) |
35 | 32, 34 | mpbid 231 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) |
36 | rmxp1 40670 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) | |
37 | 1, 36 | sylan2 592 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) |
38 | 35, 37 | breqtrrd 5098 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (𝐴 Xrm (𝑏 + 1))) |
39 | 5, 8, 12, 20, 38 | ltletrd 11065 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < (𝐴 Xrm (𝑏 + 1))) |
40 | nn0z 12273 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℤ) | |
41 | 2 | fovcl 7380 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑎) ∈ ℕ0) |
42 | 40, 41 | sylan2 592 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℕ0) |
43 | 42 | nn0red 12224 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℝ) |
44 | nn0uz 12549 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
45 | oveq2 7263 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1))) | |
46 | oveq2 7263 | . . 3 ⊢ (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏)) | |
47 | oveq2 7263 | . . 3 ⊢ (𝑎 = 𝑀 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑀)) | |
48 | oveq2 7263 | . . 3 ⊢ (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁)) | |
49 | 39, 43, 44, 45, 46, 47, 48 | monotuz 40679 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
50 | 49 | 3impb 1113 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 ↑cexp 13710 ◻NNcsquarenn 40574 Xrm crmx 40638 Yrm crmy 40639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-dvds 15892 df-gcd 16130 df-numer 16367 df-denom 16368 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-squarenn 40579 df-pell1qr 40580 df-pell14qr 40581 df-pell1234qr 40582 df-pellfund 40583 df-rmx 40640 df-rmy 40641 |
This theorem is referenced by: lermxnn0 40688 |
Copyright terms: Public domain | W3C validator |