Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrmxnn0 Structured version   Visualization version   GIF version

Theorem ltrmxnn0 42988
Description: The X-sequence is strictly monotonic on 0. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
ltrmxnn0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁)))

Proof of Theorem ltrmxnn0
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0z 12493 . . . . . 6 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
2 frmx 42952 . . . . . . 7 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
32fovcl 7474 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0)
41, 3sylan2 593 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℕ0)
54nn0red 12443 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℝ)
6 eluzelre 12743 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
76adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ)
85, 7remulcld 11142 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ)
91peano2zd 12580 . . . . . 6 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℤ)
102fovcl 7474 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0)
119, 10sylan2 593 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0)
1211nn0red 12443 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℝ)
13 eluz2b2 12819 . . . . . . 7 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴))
1413simprbi 496 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
1514adantr 480 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 1 < 𝐴)
16 rmxypos 42986 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
1716simpld 494 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 < (𝐴 Xrm 𝑏))
18 ltmulgt11 11981 . . . . . 6 (((𝐴 Xrm 𝑏) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < (𝐴 Xrm 𝑏)) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴)))
195, 7, 17, 18syl3anc 1373 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴)))
2015, 19mpbid 232 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))
21 rmspecnonsq 42946 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
2221eldifad 3914 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
2322adantr 480 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ)
2423nnred 12140 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℝ)
25 frmy 42953 . . . . . . . . . 10 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2625fovcl 7474 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
271, 26sylan2 593 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℤ)
2827zred 12577 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℝ)
2923nnnn0d 12442 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ0)
3029nn0ge0d 12445 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ ((𝐴↑2) − 1))
3116simprd 495 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
3224, 28, 30, 31mulge0d 11694 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))
3324, 28remulcld 11142 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ)
348, 33addge01d 11705 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ↔ ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))))
3532, 34mpbid 232 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
36 rmxp1 42971 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
371, 36sylan2 593 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))
3835, 37breqtrrd 5119 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (𝐴 Xrm (𝑏 + 1)))
395, 8, 12, 20, 38ltletrd 11273 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < (𝐴 Xrm (𝑏 + 1)))
40 nn0z 12493 . . . . 5 (𝑎 ∈ ℕ0𝑎 ∈ ℤ)
412fovcl 7474 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑎) ∈ ℕ0)
4240, 41sylan2 593 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℕ0)
4342nn0red 12443 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℝ)
44 nn0uz 12774 . . 3 0 = (ℤ‘0)
45 oveq2 7354 . . 3 (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1)))
46 oveq2 7354 . . 3 (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏))
47 oveq2 7354 . . 3 (𝑎 = 𝑀 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑀))
48 oveq2 7354 . . 3 (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁))
4939, 43, 44, 45, 46, 47, 48monotuz 42980 . 2 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁)))
50493impb 1114 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  cexp 13968  NNcsquarenn 42875   Xrm crmx 42939   Yrm crmy 42940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-squarenn 42880  df-pell1qr 42881  df-pell14qr 42882  df-pell1234qr 42883  df-pellfund 42884  df-rmx 42941  df-rmy 42942
This theorem is referenced by:  lermxnn0  42989
  Copyright terms: Public domain W3C validator