![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrmxnn0 | Structured version Visualization version GIF version |
Description: The X-sequence is strictly monotonic on ℕ0. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
Ref | Expression |
---|---|
ltrmxnn0 | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 12629 | . . . . . 6 ⊢ (𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ) | |
2 | frmx 42608 | . . . . . . 7 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
3 | 2 | fovcl 7546 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm 𝑏) ∈ ℕ0) |
4 | 1, 3 | sylan2 591 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℕ0) |
5 | 4 | nn0red 12579 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) ∈ ℝ) |
6 | eluzelre 12879 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
7 | 6 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 𝐴 ∈ ℝ) |
8 | 5, 7 | remulcld 11285 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ∈ ℝ) |
9 | 1 | peano2zd 12715 | . . . . . 6 ⊢ (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℤ) |
10 | 2 | fovcl 7546 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0) |
11 | 9, 10 | sylan2 591 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℕ0) |
12 | 11 | nn0red 12579 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) ∈ ℝ) |
13 | eluz2b2 12951 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 1 < 𝐴)) | |
14 | 13 | simprbi 495 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) |
15 | 14 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 1 < 𝐴) |
16 | rmxypos 42642 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏))) | |
17 | 16 | simpld 493 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 < (𝐴 Xrm 𝑏)) |
18 | ltmulgt11 12119 | . . . . . 6 ⊢ (((𝐴 Xrm 𝑏) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 < (𝐴 Xrm 𝑏)) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))) | |
19 | 5, 7, 17, 18 | syl3anc 1368 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (1 < 𝐴 ↔ (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴))) |
20 | 15, 19 | mpbid 231 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < ((𝐴 Xrm 𝑏) · 𝐴)) |
21 | rmspecnonsq 42601 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | |
22 | 21 | eldifad 3958 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
23 | 22 | adantr 479 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ) |
24 | 23 | nnred 12273 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℝ) |
25 | frmy 42609 | . . . . . . . . . 10 ⊢ Yrm :((ℤ≥‘2) × ℤ)⟶ℤ | |
26 | 25 | fovcl 7546 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ) |
27 | 1, 26 | sylan2 591 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℤ) |
28 | 27 | zred 12712 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Yrm 𝑏) ∈ ℝ) |
29 | 23 | nnnn0d 12578 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ0) |
30 | 29 | nn0ge0d 12581 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ ((𝐴↑2) − 1)) |
31 | 16 | simprd 494 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏)) |
32 | 24, 28, 30, 31 | mulge0d 11832 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))) |
33 | 24, 28 | remulcld 11285 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ∈ ℝ) |
34 | 8, 33 | addge01d 11843 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (0 ≤ (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)) ↔ ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏))))) |
35 | 32, 34 | mpbid 231 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) |
36 | rmxp1 42627 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) | |
37 | 1, 36 | sylan2 591 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm (𝑏 + 1)) = (((𝐴 Xrm 𝑏) · 𝐴) + (((𝐴↑2) − 1) · (𝐴 Yrm 𝑏)))) |
38 | 35, 37 | breqtrrd 5173 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → ((𝐴 Xrm 𝑏) · 𝐴) ≤ (𝐴 Xrm (𝑏 + 1))) |
39 | 5, 8, 12, 20, 38 | ltletrd 11415 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑏 ∈ ℕ0) → (𝐴 Xrm 𝑏) < (𝐴 Xrm (𝑏 + 1))) |
40 | nn0z 12629 | . . . . 5 ⊢ (𝑎 ∈ ℕ0 → 𝑎 ∈ ℤ) | |
41 | 2 | fovcl 7546 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑎) ∈ ℕ0) |
42 | 40, 41 | sylan2 591 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℕ0) |
43 | 42 | nn0red 12579 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑎 ∈ ℕ0) → (𝐴 Xrm 𝑎) ∈ ℝ) |
44 | nn0uz 12910 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
45 | oveq2 7424 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → (𝐴 Xrm 𝑎) = (𝐴 Xrm (𝑏 + 1))) | |
46 | oveq2 7424 | . . 3 ⊢ (𝑎 = 𝑏 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑏)) | |
47 | oveq2 7424 | . . 3 ⊢ (𝑎 = 𝑀 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑀)) | |
48 | oveq2 7424 | . . 3 ⊢ (𝑎 = 𝑁 → (𝐴 Xrm 𝑎) = (𝐴 Xrm 𝑁)) | |
49 | 39, 43, 44, 45, 46, 47, 48 | monotuz 42636 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
50 | 49 | 3impb 1112 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝐴 Xrm 𝑀) < (𝐴 Xrm 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 ℝcr 11148 0cc0 11149 1c1 11150 + caddc 11152 · cmul 11154 < clt 11289 ≤ cle 11290 − cmin 11485 ℕcn 12258 2c2 12313 ℕ0cn0 12518 ℤcz 12604 ℤ≥cuz 12868 ↑cexp 14075 ◻NNcsquarenn 42530 Xrm crmx 42594 Yrm crmy 42595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-card 9975 df-acn 9978 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-xnn0 12591 df-z 12605 df-dec 12724 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ioo 13376 df-ioc 13377 df-ico 13378 df-icc 13379 df-fz 13533 df-fzo 13676 df-fl 13806 df-mod 13884 df-seq 14016 df-exp 14076 df-fac 14286 df-bc 14315 df-hash 14343 df-shft 15067 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-limsup 15468 df-clim 15485 df-rlim 15486 df-sum 15686 df-ef 16064 df-sin 16066 df-cos 16067 df-pi 16069 df-dvds 16252 df-gcd 16490 df-numer 16732 df-denom 16733 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-rest 17432 df-topn 17433 df-0g 17451 df-gsum 17452 df-topgen 17453 df-pt 17454 df-prds 17457 df-xrs 17512 df-qtop 17517 df-imas 17518 df-xps 17520 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-mulg 19058 df-cntz 19307 df-cmn 19776 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-fbas 21336 df-fg 21337 df-cnfld 21340 df-top 22884 df-topon 22901 df-topsp 22923 df-bases 22937 df-cld 23011 df-ntr 23012 df-cls 23013 df-nei 23090 df-lp 23128 df-perf 23129 df-cn 23219 df-cnp 23220 df-haus 23307 df-tx 23554 df-hmeo 23747 df-fil 23838 df-fm 23930 df-flim 23931 df-flf 23932 df-xms 24314 df-ms 24315 df-tms 24316 df-cncf 24886 df-limc 25883 df-dv 25884 df-log 26580 df-squarenn 42535 df-pell1qr 42536 df-pell14qr 42537 df-pell1234qr 42538 df-pellfund 42539 df-rmx 42596 df-rmy 42597 |
This theorem is referenced by: lermxnn0 42645 |
Copyright terms: Public domain | W3C validator |